

iQC SIMPLICITY 25-30-35-20 T-25 T-30 T

INSTALLATION AND SERVICING INSTRUCTIONS

ENSURE THAT THESE INSTRUCTIONS ARE LEFT FOR THE USER AFTER COMPLETION OF THE BENCHMARK SECTION

PLEASE READ THE IMPORTANT NOTICE WITHIN THIS GUIDE REGARDING YOUR BOILER WARRANTY

only the combi version iQO SIMPLICITY 25-30-35

IMPORTANT NOTICE

For the first year all of our appliances are protected by our manufacturer's guarantee which covers both parts and labour.

As you would expect from **iQC**, it is our aim to provide our valued customers with the best in after sales and service. To take advantage of any extended warranty offered, all you have to do is to adhere to these 3 simple conditions:

- The installation must be carried out to Manufacturers/Benchmark Standards by a Gas Safe Registered Engineer, and recorded in the installation manual.
- The appliance must be registered with both **iQC** and Gas Safe within 30 days of installation.
- The appliance must be serviced annually, by a Gas Safe registered engineer-ensuring that the Benchmark service record in the installation manual is completed.

Failure to comply with the above will result in only the 12 month warranty being offered. In the absence of any proof of purchase, the 12 month warranty period will commence from the date of manufacture of the boiler as shown on the appliance data plate.

SAFE HANDLING

This boiler may require 2 or more operatives to move it into its installation site, remove it from its packaging and during movement into its installation location. Manoeuvring the boiler may include the use of a sack truck and involve lifting pushing and pulling. Caution should be exercised during these operations.

Operatives should be knowledgeable in handling techniques when performing these tasks and the following precautions should be considered:

- Grip the boiler at the base
- Be physically capable
- Use personal protective equipment as appropriate e.g. gloves, safety footwear.

During all manoeuvres and handling actions, every attempt should be made to ensure the following unless unavoidable and/or the weight is light.

- Keep back straight
- Avoid twisting at the waist
- Always grip with the palm of the hand
- Keep load as close to the body as possible
- Always use assistance

WARNING

Caution should be exercised when performing any work on this appliance.

- Protective gloves and safety glasses are recommended.
- Avoid direct contact with sharp edges.
- Avoid contact with any hot surfaces.

NOTICE

Please be aware that due to the wet testing of the appliance, there may some residual water in the hydraulic circuit.

- Protect any surfaces, carpets or floorings.
- Use a suitable container to catch any water that escape when removing the protective caps from the connections.

Code Of Practice

For the installation, commissioning and servicing of domestic heating and hot water products

Benchmark places responsibilities on both manufacturers and installers.* The purpose is to ensure that customers** are provided with the correct equipment for their needs, that it is installed, commissioned and serviced in accordance with the manufacturer's instructions by competent persons and that it meets the requirements of the appropriate Building Regulations. Installers are required to carry out work in accordance with the following:

*The use of the word "installer" is not limited to installation itself and covers those carrying out installation, commissioning and/or servicing of heating and hot water products, or the use of supporting products (such as water treatment or test equipment).
*Customer includes householders, landlords and tenants.

C Heating and Hotwater Industry Council (HHIC)

Standards of Work

- Be competent and qualified to undertake the work required.
- Install, commission, service and use products in accordance with the manufacturer's instructions provided.
- Ensure that where there is responsibility for design work, the installation is correctly sized and fit for purpose.
- Meet the requirements of the appropriate Building Regulations. Where this involves notifiable work be a member of a Competent Persons Scheme or confirm that the customer has notified Local Authority Building Control (LABC), prior to work commencing.
- Complete all relevant sections of the Benchmark Checklist/Service Record when carrying out commissioning or servicing of a product or system.
- Ensure that the product or system is left in a safe condition and, whenever possible, in good working order.
- Highlight to the customer any remedial or improvement work identified during the course of commissioning or servicing work.
- Refer to the manufacturer's helpline where assistance is needed.
- Report product faults and concerns to the manufacturer in a timely manner.

Customer Service

- Show the customer any identity card that is relevant to the work being carried out prior to commencement or on request.
- Give a full and clear explanation/demonstration of the product or system and its operation to the customer.
- Hand over the manufacturer's instructions, including the Benchmark Checklist, to the customer on completion of an installation.
- Obtain the customer's signature, on the Benchmark Checklist, to confirm satisfactory demonstration and receipt of manufacturer's instructions.
- Advise the customer that regular product servicing is needed, in line with manufacturers' recommendations, to ensure that safety and efficiency is maintained.
- Respond promptly to calls from a customer following completion of work, providing advice and assistance by phone and, if necessary, visiting the customer.
- Rectify any installation problems at no cost to the customer during the installer's guarantee period.

THE BENCHMARK SCHEME

The manufacturer is a licensed member of the Benchmark Scheme which aims to improve the standards of installation and commissioning of domestic heating and hot water systems in the UK and to encourage regular servicing to optimise safety, efficiency and performance.

Benchmark is managed and promoted by the Heating and Hotwater Industry Council. For more information visit <u>www.centralheating.co.uk</u>

CE IPX4D

iQC SIMPLICITY 25: Gas Council number 47-283-41 iQC SIMPLICITY 30: Gas Council number 47-283-42 iQC SIMPLICITY 35: Gas Council number 47-283-43 **iQC SIMPLICITY 20 T**: Gas Council number 41-283-35 **iQC SIMPLICITY 25 T**: Gas Council number 41-283-36 **iQC SIMPLICITY 30 T**: Gas Council number 41-283-37

These appliances comply with the S.E.D.B.U.K. scheme, band "A"

CONTENTS

2 3 4 5 6 7 8	DESCRIPTION OF THE BOILER. INSTALLATION. CHARACTERISTICS. USE AND MAINTENANCE, BENCHMARK AND COMMISSIONING. FAULT FINDING. REPLACEMENT OF PARTS. APPENDIX 1 APPENDIX 2	pag. pag. pag. pag. pag. pag. pag.	10 17 22 28 29 31 43
	APPENDIX 2		

IMPORTANT INFORMATION

IT IS A STATUTORY REQUIREMENT THAT ALL GAS APPLIANCES ARE INSTALLED BY COMPETENT PERSONS, IN ACCORDANCE WITH THE GAS SAFETY (INSTALLATION AND USE) REGULATIONS (CURRENT EDITION). The manufacturer's instructions must not be taken as overriding any statutory requirements, and failure to comply with these regulations may lead to prosecution.

No modifications to the appliance should be made unless they are fully approved by the manufacturer.

GAS LEAKS: DO NOT OPERATE ANY ELECTRICAL SWITCH, OR USE A NAKED FLAME. TURN OFF THE GAS SUPPLY AND VENTILATE THE AREA BY OPENING DOORS AND WINDOWS CONTACT THE GAS EMERGENCY SERVICE ON 0800111999.

Please refer to commissioning instructions for filling in the checklist at the back of this installation guide. Note: All Gas Safe registered installers carry a ID Card.

You can check your installer is Gas Safe Registered by calling 0800 408 5577

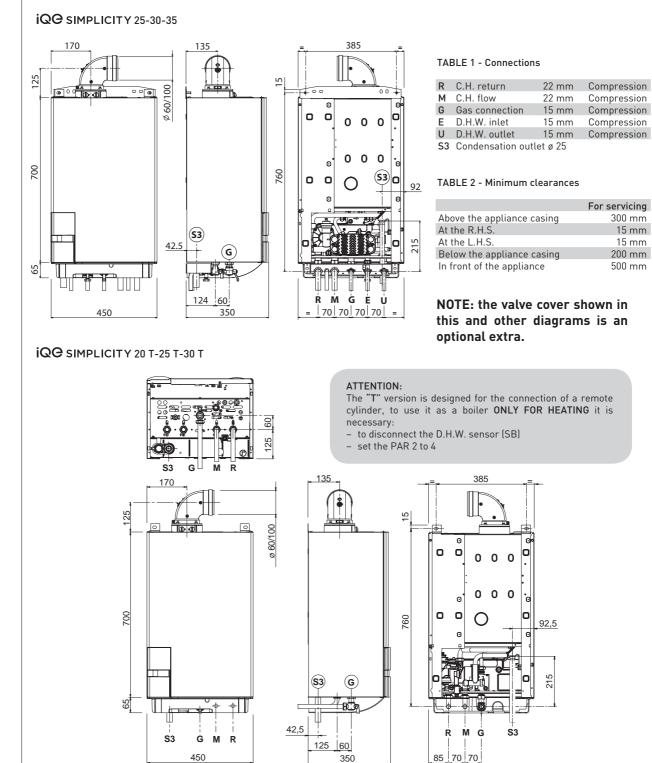
iQO SIMPLICITY BOILERS Installer checklist

Please remember to carry out the following checks after installation. This will achieve complete customer satisfaction, and avoid unnecessary service calls. A charge will be made for a service visit where the fault is not due to a manufacturing defect.

- Has a correct by-pass been fitted and adjusted?
- Has the system and boiler been flushed?
- Is the system and boiler full of water, and the correct pressure showing on the pressure gauge?
- Is the Auto Air Vent open?
- Has the pump been rotated manually?
- Is the gas supply working pressure correct?
- Is the boiler wired correctly? (See installation manual).
- Has the D.H.W. flow rate been set to the customer requirements?
- Has the customer been fully advised on the correct use of the boiler, system and controls?
- Has the Aqua Guard Filter been cleaned (see 4.5.2)?
- Has the Benchmark Checklist in the use and maintenance section of this manual, been completed ?

1 DESCRIPTION OF THE BOILER

1.1 INTRODUCTION


iQC SIMPLICITY boilers are premixed gas condensation thermal modules that employ a microprocessor-based technology to control and manage all the functions.

All modules are compliant with European

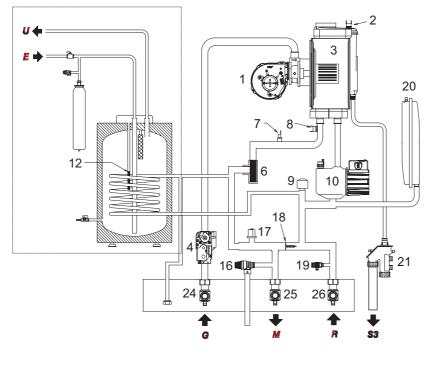
1.2 DIMENSIONS

Directives 2009/142/CE, 2004/108/CE, 2006/95/CE and 92/42/CE. For optimum installation and operation, always follow the instructions provided in this manual. The products manufactured and sold by **iQO** do not contain any banned materials or substances (ie they comply with ISO9000:2000).

The **iQC** SIMPLICITY 20 T - 25 T - 30 T is a system boiler which is designed to be directly connected to a domestic hot water cylinder. When it is not directly connected to a cylinder the two connections at the left hand side, R3 and M2, need to be capped off, and the cylinder sensor SB disconnected from the PCB.

1.3 TECHNICAL FEATURES

iQC SIMPLICITY		25	30	35	20 T	25 T	30 T
Heat output							
Nominal (80-60°C)	kW	23.9	28.9	34.1	19.0	23.9	28.9
Nominal (50-30°C)	kW	26.2	31.6	37.2	20.9	26.2	31.6
Reduced G20 (80-60°C)	kW	4.7	5.9	7.9	4.2	4.7	5.9
Reduced G20 (50-30°C)	kW	5.4	6.6	8.8	4.8	5.4	6.6
Reduced G31 (80-60°C)	kW	7.5	7.6	8.7	7.5	7.5	7.6
Reduced G31 (50-30°C)	kW	8.5	8.5	9.6	8.5	8.5	8.5
Heat input Nominal	kW	24.5	29.5	34.8	19.5	24.5	29.5
Heat input Reduced G20/G31	kW	5.0/8.0	6.2/8.0	8.2/9.0	4.5/8.0	5.0/8.0	6.2/8.0
Max/min useful yield (80-60°C)	%	94/97.5	95/98	96/98	94/97.5	94/97.5	95/98
Max/min useful yield (50-30°C)	%	107/107	107/107	107/107	107/107	107/107	107/107
Useful yield at 30% of the load (40-30°C)	%	107	107	107	107	107	107
Termal efficiency (CEE 92/42 directive)	70	****	****	****	****	****	****
Losses after shutdown to 50°C (EN 483)) W	85	90	95	85	85	90
Supply voltage	V-Hz	230-50	230-50	230-50	230-50	230-50	230-50
Adsorbed power consumption	W	125	130	140	120	125	130
Electrical protection grade	IP	125 X4D	X4D	140 X4D	120 X4D	725 X4D	130 X4D
C.H. setting range	۲۲ °C	20/80	20/80	20/80	20/80	20/80	20/80
Water content boiler	-ر ا	4.9	5.5	6.0	5.0	20/80 5.0	5.6
Maximum water head		4.7 2.5	2.5	2.5	2.5	2.5	2.5
	bar °C	2.5 85	2.5 85	2.5 85	85		2.5 85
Maximum temperature	-					85	
Capacity of the heating expans. vessel	l	8	10	10	8	8	10
Pressure of the heating expans. vessel	bar °C	1	1	1	1	1	1
D.H.W. setting range	-	10/65	10/65	10/65			
D.H.W. flow rate (EN 625)	l/min	11.2	13.6	16.1			
Continuous D.H.W. flow rate Δt 30°C	l/min	11.4	13.8	16.3			
Continuous D.H.W. flow rate ∆t 35°C	l/min	9.8	11.8	14.0			
Minimum D.H.W. flow rate	l/min	2	2	2			
D.H.W. pressure min/max	bar	0.2/6.0	0.2/6.0	0.2/6.0			
D.H.W. pressure min. nom. power	bar	0.5	0.65	0.8			
Exhaust fumes temperature							
At max flow rate (80-60°C)	°C	70	70	70	70	70	70
At max flow rate (50-30°C)	°C	40	40	40	40	40	40
At min. flow rate (80-60°C)	°C	65	65	65	65	65	65
At min. flow rate (50-30°C)	°C	35	35	35	35	35	35
Smokes flow min/max	kg/h	9/42	11/50	14/60	8/33	9/42	11/50
CO2 at max/min flow rate G20	%	9.0/9.0	9.0/9.0	9.0/9.0	9.0/9.0	9.0/9.0	9.0/9.0
CO2 at max/min flow rate G31	%	10.0/10.0	10.0/10.0	10.0/10.0	10.0/10.0	10.0/10.0	10.0/10.0
CE certification	n°				BU5312		
Category					2H3P		
Туре					13-33-43-53-83		
NOx emission class					mg/kWh)		
Weight when empty	kg	40.5	42	44	39	40	41.5
Main burner nozzle							
Quantity nozzles	n°	2	2	2	2	2	2
G20 nozzle diameter diversified	Ø	2.4/3.3	2.8/3.8	3.5/4.0	2.4/3.3	2.4/3.3	2.8/3.8
G31 nozzle diameter diversified	Ø	1.9/2.6	2.2/2.9	2.8/3.0	1.9/2.6	1.9/2.6	2.2/2.9
Consumption at max./min. flow rate							
Maximum G20	m³/h	2.59	3.12	3.68	2.06	2.59	3.12
Minimum G20	m³/h	0.53	0.66	0.87	0.48	0.53	0.66
					4 5 4	1 00	2.20
Maximum G31	kg/h	1.90	2.29	2.70	1.51	1.90	2.29
Maximum G31 Minimum G31	kg/h kg/h	1.90 0.62	2.29 0.62	2.70 0.70	0.62	0.62	0.62


1.4 FUNCTIONAL DIAGRAM

iQC SIMPLICITY 25-30-35

iQC SIMPLICITY 20 T-25 T-30 T

OPTIONAL

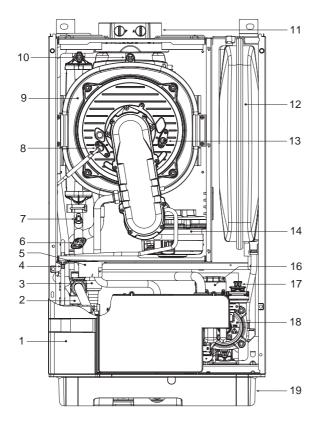
KEY Fan 1 Limit thermostat 2 Primary exchanger 3 4 Gas valve 5 D.H.W. exchanger Aqua Guard Filter System 6 C.H. sensor (SM) 7 8 Safety thermostat 100°C Diverter valve 9 10 Pump with air release vent 12 D.H.W. sensor (SS/SB) D.H.W. flowmeter 13 Hot water inlet filter 14 16 3 BAR safety valve 17 Pressure transducer 18 By-pass Drain vent 19

- 20 Expansion vessel
- 21 Condensate trap
- 23 D.H.W. isolation valve
- 24 Gas isolation valve
- 25 C.H. flow isolation valve
- C.H. return isolation valve 26

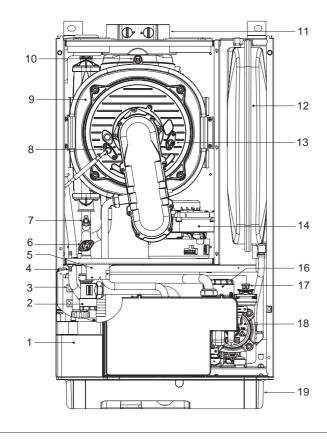
CONNECTIONS

- R C.H. return М
- C.H. flow G
- Gas connection Е D.H.W. inlet
- U D.H.W. outlet
- S3 Condensation outlet

KEY


- 1 Fan
- 2 Limit thermostat
- 3 Primary exchanger
- 4 Gas valve
- 6 Aqua Guard Filter System
- 7 C.H. sensor (SM)
- 8 Safety thermostat 100°C
- 9 Diverter valve
- 10 Pump with air release vent
- 12 D.H.W. sensor (SS/SB)
- 16 3 BAR safety valve
- 17 Pressure transducer
- 18 By-pass
- 19 Boiler discharge
- 20 Expansion vessel
- 21 Condensate drain trap
- 24 Gas isolation valve
- 25 C.H. flow isolation valve
- 26 C.H. return isolation valve

CONNECTIONS


- R C.H. return
- C.H. flow М
- G Gas connection Е
 - D.H.W. inlet
- U D.H.W. outlet
- S3 Condensation outlet

1.5 MAIN COMPONENTS

iQC SIMPLICITY 25-30-35

iQO SIMPLICITY 20 T-25 T-30 T

KEY

- Control panel
 Aqua Guard Filter System
- 3 Condensate trap
- 4 Air pressure test point
- 5 Ignition transformer
 6 Safety thermostat
 7 C.H. sensor (SM)

- 8 Ignition electrode
- 9 Primary exchanger
- 10 Exhaust fumes sensor (SF)
- 11 Flue manifold
- 12 Expansion vessel
- 13 Ionisation electrode
- 14 Fan
- 16 Diverter valve
- 17 Automatic vent
- 18 Pump
- 19 Valve cover (optional)

KEY

- 1 Control panel
- 2 Aqua Guard Filter System
- 3 Condensate trap4 Air pressure test point
- 5 Ignition transformer
- 6 Safety thermostat
- C.H. sensor (SM) 7
- 8 Ignition electrode
- 9 Primary exchanger
- 10 Exhaust fumes sensor (SF)
- 11 Flue manifold
- 12 Expansion vessel
- 13 Ionisation electrode
- 14 Fan
- 16 Diverter valve
- 17 Automatic air vent
- 18 Pump19 Valve cover (optional)

Fig. 3

2 INSTALLATION

The boiler must be installed in a fixed location and only by specialized and qualified person in compliance with all instructions contained in this manual. The installation of this boiler must be in accordance with the relevant requirements of the current Gas Safety (installation and use), the local building regulations, and and I.E.E. wiring regulations.

PLEASE NOTE: Before fitting the flue to the boiler, the condensate trap should be filled, see 2.4.1

2.1 VENTILATION REQUIREMENTS

Detailled recommendations for air supply are given in BS5440:2. The following notes are for general guidance:

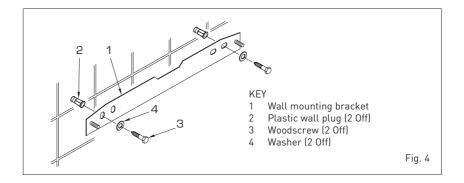
It is not necessary to have a purpose provided air vent in the room or compartment in which the appliance is installed.

2.2 ANTI-FREEZE FUNCTION

The boilers are equipped with anti-freeze function which activates the pump and the burner when the temperature of the water contained inside the appliance drops to below 6° C. The anti-freeze function can only operate if:

- the boiler is correctly connected to the gas and electricity supply circuits;
- the boiler is constantly fed;
- the boiler ignition is not blocked;
- the essential components of the boiler are all in working order

In these conditions the boiler is protected against frost down to an environmental temperature of -5° C.


ATTENTION: In the case of installation in a place where the temperature drops below 0°C, the connection pipes must be protected.

2.3 FIXING THE WALL MOUNTING BRACKET

- Mark the position of the two wall mounting bracket fixing holes and the flue/air duct hole on the appropriate wall(s).
- Drill a top two fixing holes using a 10 mm masonry drill and fit the plastic plugs provided.
- Accurately measure the wall thickness, and note this dimension for later use.
- Secure the wall mounting bracket in position using the screws provided. Ensure that it is the correct way up, as indicated in fig. 4.

2.4 CONNECTING UP SYSTEM

Before connecting the boiler it is

recommended that the system be flushed in accordance to BS 7593, to eliminate any foreign bodies that may be detrimental to the operating efficiency of the appliance. When connecting up the boiler the clearances in fig. 1 should be respected. The boiler is supplied with a valve pack.

A safety valve set at 3 bar is fitted to the appliance, the discharge pipe should be extended to terminate safely away from the appliance and where a discharge would not cause damage to persons or property but would be detected. The pipe should be a minimum of 15 mm ø and should be able to withstand boiling water, and should avoid sharp corners or upward pipe runs where water may be retained.

Gas Connection

The gas connection must be made using seamless steel or copper. Where the piping has to pass through walls, a suitable insulating sleeve must be provided. When sizing gas piping, from the meter to the boiler, take into account both the volume flow rates (consumption) in m^3/h and the relative density of the gas in question. The sections of the piping making up the system must be such as to guarantee a supply of gas sufficient to cover the maximum output available from the boiler, limiting pressure loss between the gas meter and any apparatus being used to not greater than 1.0 mbar for family II gases (natural gas).

An adhesive data badge is sited inside the front panel; it contains all the technical data identifying the boiler and the type of gas for which the boiler is arranged.

2.4.1 Connection of condensation water trap

To ensure safe disposal of the condensate produced by the flue gases, reference should be made to BS6798:2009.

The boiler incorporates a condensate trap which has a seal of 75 mm, therefore no additional trap is required. The condensate should ideally be discharged internally into an internal waste pipe(washing machine/sink waste) or a soil pipe to avoid the risk of freezing. External pipe runs should be avoided, but if it is necessary, the pipework should be at least 32 mm and protected from the risc of freezing with a waterproof insulation and the length kept to a minimum and not exceeding 3 m. termination should be into an external gully or purpose made soakaway. We recommend that the condensate drain at the boiler is in 20 mm solvent weld pipe. The condensate trap can be filled prior to the installation of the flue by carefully pouring 1 litre of water into the exhaust connection.

NOTE: All pipework must have a continuous fall from the boiler and must be resistant to corrosion by condensate, copper or steel is NOT suitable.

It should be noted that the connection of a condensate pipe to a drain may be subject to local building control requirements.

2.4.2 Dealing with condensate

See appendix 1.

2.4.3 Requirements for sealed water systems **iQC** SIMPLICITY

The heating system design should be based on the following information:

- a) The available pump head is given in fig. 14.
- b) The burner starts when the C.H. flow reaches 400÷450 l/h. This safety condition is ensured by the flow switch.
- c) The appliance is equipped with an internal by-pass that operates with system heads (H) greater than 3 m. The maximum flow through the by-pass is about 300 l/h. If thermostatic radiator valves are to be installed, at least one radiator should be without a thermostatic valve (usually the bathroom radiator).
- d) A sealed system must only be filled by a competent person using one of the approved methods shown in fig. 5. The system design should incorporate the connections appropriate to one of these methods.

2.5 CHARACTERISTICS OF FEEDWATER

- All recirculatory systems will be subject to corrosion unless an appropriate water treatment is applied. This means that the efficiency of the system will deteriorate as corrosion sludge accumulates within the system, risking damage to pump and valves, boiler noise and circulation problems.
- Before connecting the boiler the its associated central heating system must be flushed in accordance with the guidelines given in BS 7593 "Treatment of water in domestic hot water central heating systems".
- iQC recommend only the use of FERNOX products for the flushing and final treatment of the system water. This is particularly important in hard water areas.

Failure to flush and add inhibitor to the system may invalidate the appliance warranty.

Artificially softened water must not be used to fill the heating system.

 It is important to check the inhibitor concentration after installation, system modification and at every service in accordance with the manufacturer's instructions (Test kits are available from inhibitor stockists).

- At every service the Aquaguard Filter (4.5.2) should be checked and cleaned.

Flues must be installed in accordance with BS 5440-1

2.6 INSTALLATION OF COAXIAL DUCT Ø 60/100 - Ø 80/125

See 2.4.1 Filling the trap, before fitting the flue. The coaxial suction and discharge pipes are supplied in a special kit (that can be purchased separately) along with assembly instructions.

The diagrams of fig. 6 illustrate some examples of different types of discharge options allowed and the maximum lengths that can be reached.

It is essential that a flue gas analysis test point is made available directly above the boiler.

IMPORTANT:

- The insertion of each additional 90° bend with a diameter of 60/100 (code 8095860) reduces the available section by 1.5 meters.
- The insertion of each additional 90° bend with a diameter of 80/125 (code 8095861) reduces the available section by 2 meters.
- Each additional 45° curve installed a diameter of 60/100 (code 8095960) reduces the available length by 1.0 metres.
- Each additional 45° curve installed a diameter of 80/125 (code 8095961) reduces the available length by 1.0 metres.

HORIZONTAL FLUES MUST BE LEVEL

NOTE: Before connecting accessories, it is always advisable to lubricate the internal part of the gaskets with silicon products. Avoid using oils and greases.

Model Le				ength of pipe				
	ø	60/100 (1	0/100 (m) ø 8 V H		80/125 (m)			
	Н	١			V			
		Min.	Max.		Min.	Max.		
20 T	6	1.3	8	12	1.2	15		
25 T - 25	6	1.3	8	12	1.2	15		
30 T - 30	5	1.3	7	10	1.2	13		
35	4	1.3	6	8	1.2	11		

LIST OF ø 60/100 ACCESSORIES

- 1 Coaxial duct kit L. 790 code 8096270
- 2a Extension L. 1000 code 8096160
- 2b Extension L. 500 code 8096161
- 3 Vertical extension L. 140 with coupling code 8086960
- 5 Tile for joint code 8091350
- 6 Terminal for roof exit L. 1285 code 8091250

LIST OF ø 80/125 ACCESSORIES

- 1 Coaxial duct kit L. 785 code 8096271
- 2a Extension L. 1000 code 8096162
- 2b Extension L. 500 code 8096163
- 3 Adapter for ø 80/125 code 8093160
- 5 Tile for joint code 8091350
- 6 Terminal for roof exit L. 1285 code 8091250

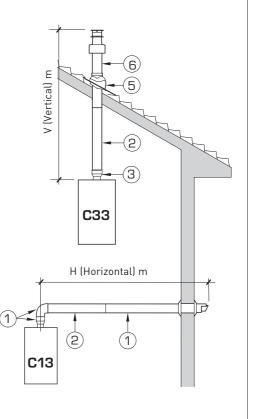
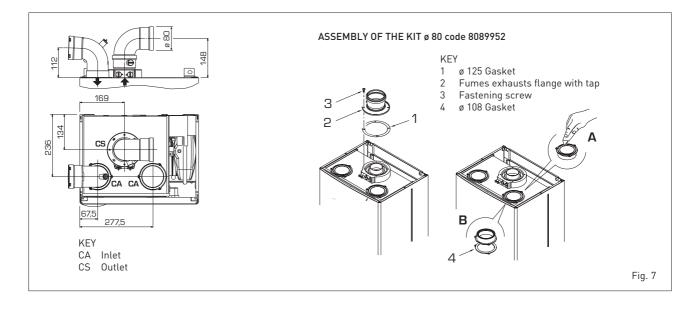



Fig. 6

2.7 INSTALLATION OF SEPARATE DUCTS Ø 80

See 2.4.1 Filling the trap, before fitting the flue. The kit with dedicated pipes enables to separate the exhaust fumes pipes from the air intake pipes (fig. 7). It is essential that a flue gas analysis test point is made available directly above the boiler.

- The kit with dedicated ø 80 pipes, code 8089952, includes a SUCTION

DIAPHRAGM THAT IS NOT used for these models. To be able to use the air inlet connection, cut its base with a tool (A) and assemble it (B).

The maximum overall length, resulting from the sum of all the intake and discharge pipes, is determined by the load losses of the single connected accessories and should not exceed 10 mm H₂O (version 20 T) and 15 mm H₂O (version 25-30-35) (ATTENTION: the total length of each pipe should not exceed 50 m, even if the total loss is below the maximum applicable loss.] See Table 1 for information on the load losses of single accessories.

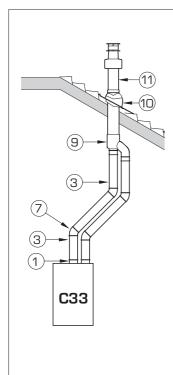
2.7.1 Separate ducts kit

The diagrams of fig. 8 show a few examples of the permitted exhausts configurations.

(12)

(3)

C13


(2

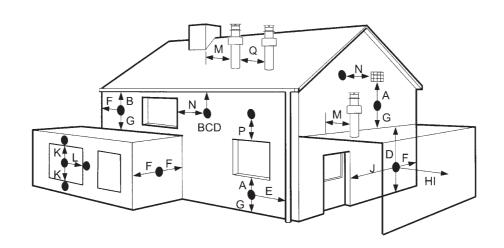
(З

(1

(13) (14)

F

LIST OF ø 80 ACCESSORIES


- 1 Coaxial duct kit code 8089952
- 3 a Extension L. 1000 code 8077352 (6 pz.)
- 3 b Extension L. 500 code 8077353 (6 pz.)
- 7 a Additional 45° MF curve code 8077454 (6 pz.)
- 7 b Additional 90° MF curve code 8077453 (6 pz.)
- 9 Manifold, code 8091450
- 10 Tile for joint code 8091350
- 11 Terminal for roof exit L. 1381 code 8091250
- 12 -----
- 13 Union suction/exhaust code 8091450
- 14 Coaxial exhaust ø 80/125 L. 885 code 8096271

NOTE: Before connecting accessories, it is always advisable to lubricate the internal part of the gaskets with silicon products. Avoid using oils and greases.

TABLE 1 - ACCESSORIES Ø 80

Accessories ø 80	Total head loss (mm H2O)							
	20) T	25 T	- 25	30 T	- 30	3	35
	Inlet	Outlet	Inlet	Outlet	Inlet	Outlet	Inlet	Outlet
Coaxial duct kit	-	-	-	-	-	-	-	-
90° elbow MF	0.15	0.20	0.20	0.25	0.25	0.30	0.30	0.40
45° elbow MF	0.10	0.10	0.15	0.15	0.20	0.20	0.25	0.25
Extension L. 1000 (horizontal)	0.10	0.10	0.15	0.15	0.20	0.20	0.25	0.25
Extension L. 1000 (vertical)	0.10	0.10	0.15	0.15	0.20	0.20	0.25	0.25
Wall terminal *	0.05	0.20	0.10	0.25	0.10	0.35	0.15	0.50
Roof outlet terminal *	0.50	0.05	0.80	0.10	1.10	0.15	1.50	0.20
* This has a factor of a factor of a factor of the set								

* This loss includes the losses of the adaptor 8091450

TABLE 2

Terr	ninal position I	Minimum sp	pacing
Α	Directly below an openable window, air vent		
	or any other ventilation opening	300 mm	12 in
В	Below guttering, drain pipes or soil pipes	75 mm	3 in
C/D	Below eaves, balconies or carport roof (*)	200 mm	8 in
E	From vertical drain pipes or soil pipes	75 mm	3 in
F	From internal or external corners	300 mm	12 in
G	Above adjacent ground, roof or balcony level	300 mm	12 in
Н	From a boundary or surface facing the boiler	600 mm	24 in
1	From a terminal facing the terminal	1,200 mm	48 in
J	From an opening in the carport		
	(eg door, window into dwelling)	1,200 mm	48 in
K	Vertically from a terminal on the same wall	1,500 mm	60 in
L	Horizont. from a terminal on the same wall	300 mm	12 in
М	Horizont. from a vertical terminal to a wall	300 mm	12 in
Ν	Horizont. from an openable window or other opening	g 300 mm	12 in
Ρ	Above an openable window or other opening	300 mm	12 in
Q	From an adjacent vertical terminal	600 mm	24 in

(*) Note: this can be reduced to 25 mm, but it would be necessary to protect the surfaces from the effects of condensate.

- If the terminal discharges into a pathway or passageway check that combustion products will not cause nuisance and that the terminal will not obstruct the passageway.
- Where the lowest part of the terminal is fitted less than 2 m (78 in) above ground, above a balcony or above a flat roof to which people have access, the terminal MUST be protected by a purpose designed guard.
- Where the terminal is fitted within 850 mm (34 in) of a plastic or painted gutter, or 450 mm (18 in) of painted eaves, an aluminium shield at least 1,500 mm (59 in) long must be fitted to the underside of the painted surface.
- The air inlet/outlet flue duct MUST NOT be closer than 10 mm (0.4 in) to combustible material.
- In certain weather conditions the terminal may emit a plume of steam. This is normal but positions where this would cause a nuisance should be avoided.

Fig. 9

2.8 POSITIONING THE OUTLET TERMINALS

The outlet terminals for forced-draught appliances may be located in the external perimeter walls of the building. To provide some indications of possible solutions, **Table 2** gives the minimum distances to be observed, with reference to the type of building shown in fig. 9.

2.9 ELECTRICAL CONNECTION

The boiler is supplied with an electric cable. Should this require replacement, it must be replaced with one of similar material and dimensions. The electric power supply to the boiler must be 230V - 50Hz single-phase through a fused main switch, with at least 3 mm spacing between contacts, fuse at 3 A. Respect the L and N polarities and the earth connection.

NOTE: **iQO** declines all responsibility

for injury or damage to persons, animals or property, resulting from the failure to provide for proper earthing of the appliance.

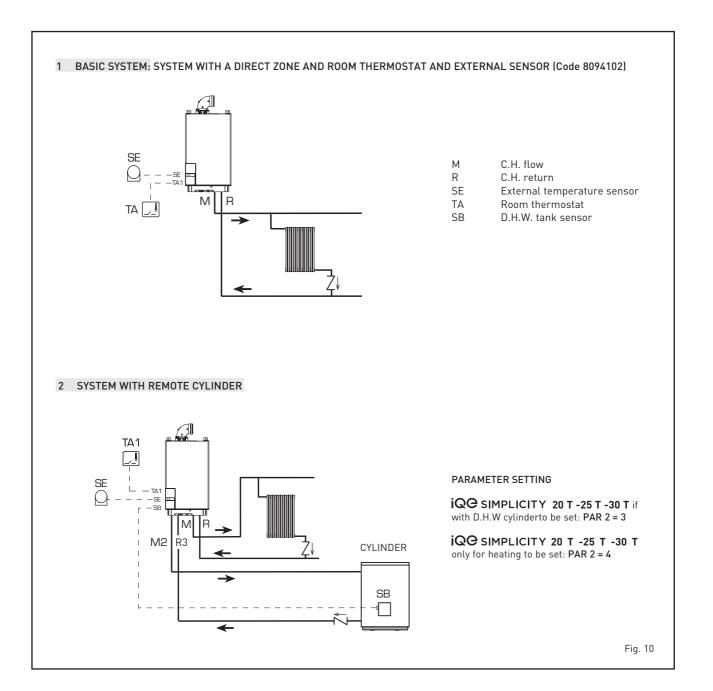
2.9.1 External Controls

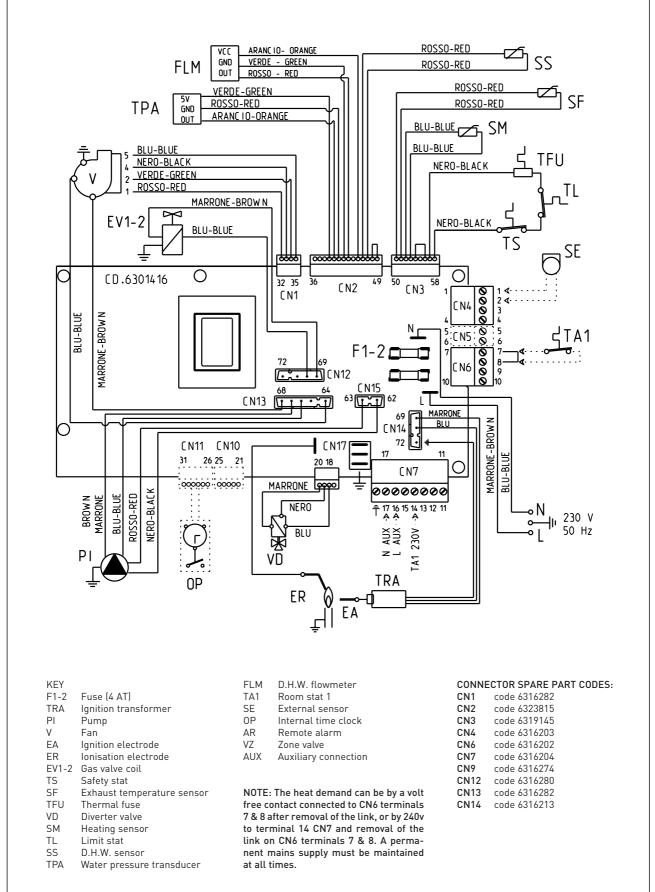
The heat demand can be by a "clean contact" (conforming to EN607301), room stat or programmer connected to the "TA" connection (figs. 11 - 11/a), CN6 terminals 7 & 8 after removing the link. A 230v switched demand to terminal 14 CN7 and removal of the "TA" link on terminals 7 & 8 on CN6.

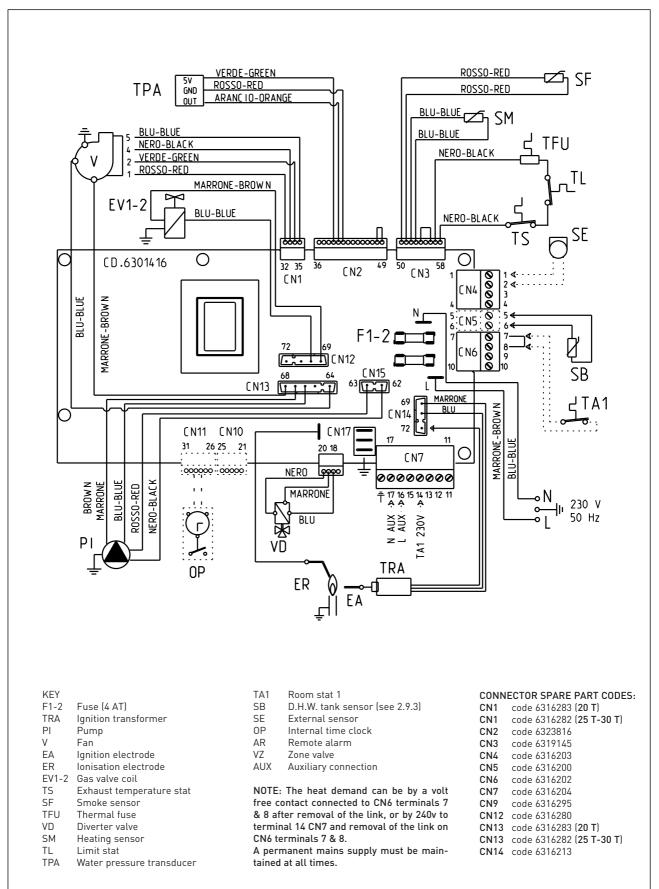
iQC SIMPLICITY Tversion the D.H.W. demand can be by either a thermistor or thermostat depending on configuration, see section 2.9.3 and 3.3. A permanent power supply must be maintained.

2.9.2 External sensor connection

The boiler is designed for connection

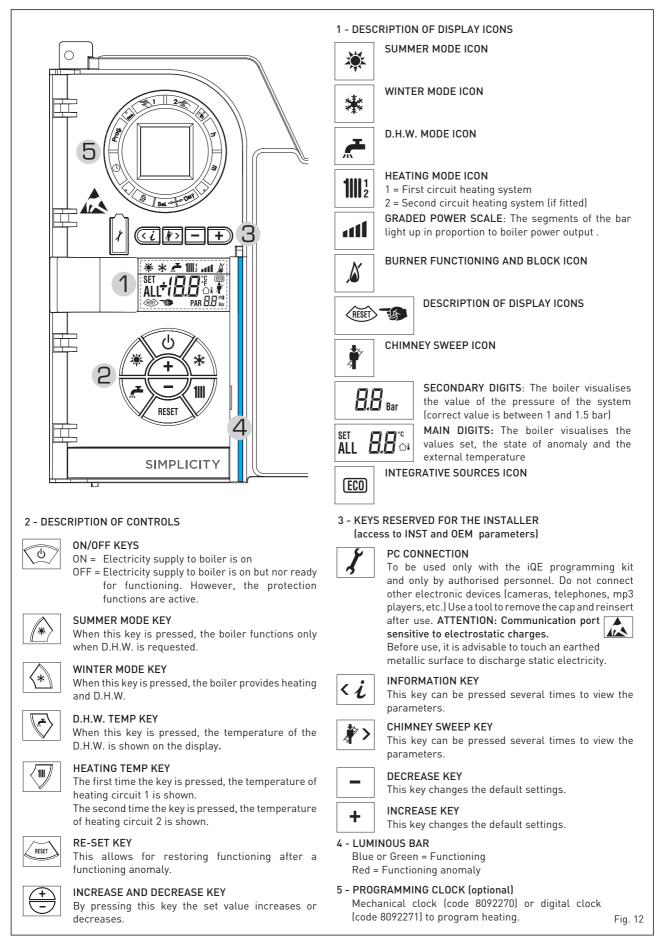

to an external temperature sensor, supplied on request (code 8094102) which can automatically regulate the temperature value of the boiler output according to the external temperature. For installation, follow the instruction in the package. It is possible to make corrections to the values by adjustment of **PAR 11**.


2.9.3 D.H.W. sensor connection in vers. **iQC** SIMPLICITY **T**


The **iQC SIMPLICITY T** version is provided with a D.H.W. sensor (SB) linked to the connector CN5.

When the boiler is coupled to an external cylinder, the sensor (SB) must be fitted into a sleeve in the cylinder and PAR 2 set to 3. If the cylinder temperature is to be controlled by a thermostat then PAR 2 is set to 4.

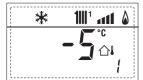
Operations must be carried out by authorized and gualified technicians.



2.11 BOILER ELECTRICAL **iQC** SIMPLICITY 20 T-25 T-30 T

Fig. 11/a

3 CHARACTERISTICS


3.1 CONTROL PANEL

3.2 ACCESS TO INSTALLER'S INFORMATION

For access to information for the installer, press the key (3 fig. 12). Every time the key is pressed, the display moves to the next item of information. If the key is not pressed, the system automatically quits the function. List of information. Please note the first key press illuminates the display only:

1. Display of external temperature, only with external sensor connected

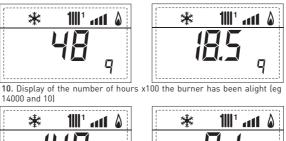
2. Display of heating temperature sensor (SM)

3. Display of D.H.W. temperature sensor (SS)

4. Display of auxiliary temperature sensor

5. Display of smoke temperature sensor

6. Display of heating temperature of first circuit


7. Display of heating temperature of second circuit

8. Display of ionisation current in µA

9. Display of fan speed in rpm x 100 (eg 4.800 and 1850 rpm)

漱

100° ant 🏻 🌢

11

11. Display of number of times the burner has ignited x 1000 (eg 97000 and 500)

18

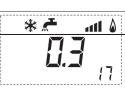
12. Display of code of last error

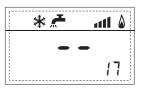
13. Display of code of penultimate error

14. Display of total number of errors

15. Installer parameter access counter (example =140 accesses)




16. OEM access counter
(example = 48 accesses)



17. Indication of D.H.W. flowmeter load (i.e. 18 l/min and 0.3 l/min) or flow switch (respectively ON and OFF) $\ensuremath{\mathsf{P}}$

3.3 ACCESS TO INSTALLER'S PARAMETERS

For access to the installer's parameters, press simultaneously the keys and r or 5 seconds (3 fig. 12). For example, the parameter PAR 23 is visualised on the display of the control

panel in the following way:

The parameters scroll forwards and backwards with the key \bigcirc and P and the default parameters can be changed with the keys \boxdot and P.

The standard visualisation returns automatically after 60 seconds, or by pressing one of the control keys (2 fig. 12).

3.3.1 Replacing the board or RESETTING parameters

If the electronic board is replaced or reset, it is necessary to configure PAR 1 and PAR 2 by associating the following values to each type of boiler to be able to restart the boiler:

GAS	MODELS	PAR 1
		1
METHANE	20 T	2
(G20)	25 T - 25	3
	30 T - 30	4
	35	5
		6
	20 T	7
PROPANE	25 T - 25	9
(G31)	30 T - 30	11
	35	12

BOILER	PAR 2
iQC SIMPLICITY T version	
with D.H.W. cylind	3
iQG SIMPLICITY T version	
without D.H.W.	4
iQO SIMPLICITY version	5

NOTE: the inside of the upper door of the boiler panel has a label with the values that have to be set for PAR 1 and PAR 2 (fig. 18).

PARAMETERS INSTALLER

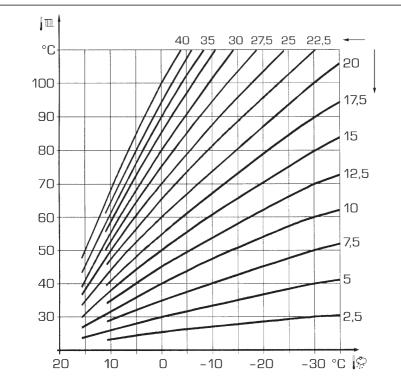
FAST CONFIGURATION

PAR	DESCRIPTION	RANGE	UNIT OF	INC/DEC	DEFAULT
		Μ	1EASUREMEN1	r unit	SETTING
1	Combustion configuration	= ND	=	=	""
		1 30			
2	Hydraulic configuration	= ND	=	=	""
		1 9			
3	Timetable 2 programmer	1 = DHW + Recirc. pum	р		
		2 = DHW	=	=	1
		3 = Recirculation pump			
4	Pressure transducer disabler	0 = Disabled	=	=	1
		1 = Enabled			
		2 = Enabled (NO ALL 09	?)		
5	Assignment of auxiliary	1 = Alarm signal (N/O)	=	=	1
	relay AUX (D.H.W. tank)	2 = Recirculation pump			
6	Luminous bar indicating	0 = Disabled	=	=	1
_	presence of voltage	1 = Enabled			
7	Allocation of CR73 channels	0 = Not assigned			
		1 = Circuit 1	=	=	1
0	F C C C	2 = Circuits 1 and 2	100 0	4 1 0 4 40	0 0 0
8	Fan rpm Step ignition	0,0 81	rpm x 100 0		9 0,0
0	1 11	0 20	%	1da 20 a 81 1	0
9	Long chimneys	0 20 1 = CR 73	%	I	U
10	Demote control ontion onthis a	1 = CR 73 2 = CR 53			1
10	Remote control option setting	2 = CR 53 3 = RVS	=	=	1
11	Correction values	-5 +5	°C	1	0
11	external sensor	-5 +5		I	U
12	Backlighting duration	= Always			
12		0 = Never	sec. x 10	1	3
		1 199	5CC. X 10	'	5
13	Modulating pump speed	0 = Minimum			
		1 = Maximum	=	=	1
		2 = Automatic			

D.H.W. - HEATING

PAR	DESCRIPTION	RANGE	UNIT OF MEASUREMENT	INC/DEC UNIT	DEFAULT SETTING
20	D.H.W. min. temperature	10 °C PAR 21	°C	1	30
21	D.H.W. max. temperature	PAR 20 PAR 62 OEI	M °C	1	60
22	Anti-legionella (only D.H.W. tank)	0 = Disabled 1 = Enabled	=	=	0
23	Boiler antifreeze	0 +20	°C	1	3
24	External sensor antifreeze	- 15 +5	°C	1	- 2
25	Climatic curve setting Zone 1	3 40	=	1	20
26	Climatic curve setting Zone 2	3 40	=	1	20
27	Min. temperature Zone 1	PAR 64 OEM PAR 2	2° 8	1	20
28	Min. temperature Zone 1	PAR 27 PAR 65 OEI	M °C	1	80
29	Min. temperature Zone 2	PAR 64 OEM PAR 3	0 °C	1	20
30	Max. temperature Zone 2	PAR 29 PAR 65 OEI	M °C	1	80
31	Max. heating power	30 100	%	1	100
32	C.H. pump over-run time	0 199	Sec.	10	30
33	Pump activation delay Zone 1	0 199	10 sec.	1	1
34	Re-ignition delay	0 10	Min.	1	3
35	Integr. sources activat. threshold	, 15 80	°C	1	""
36	D.H.W. pump over-run time	0 199	Sec.	1	0
39	Saturation zone modulation	= Enabled	%	1	100
	D.H.W. flowmeter	0 100			

PARAMETERS INSTALLER


EXP	ANSION CARD				
PAR	DESCRIPTION	RANGE	UNIT OF MEASUREMENT	INC/DEC UNIT	DEFAULT SETTING
40	Number of expansion boards	03	=	1	0
41	Mix valve stroke time	0199	10 sec.	1	12
42	Priority of D.H.W. over mixed zone	0 = Paralle 1 = Absolute	=	=	1
43	Floor drying	0 = No activated 1 = Curve A 2 = Curve B 3 = Curve A+B	=	=	0
44	Type of solar system	1 7	=	1	1
45	Δt solar collector pump 1	PAR 74 OEM - 1 5	0 °C	1	8
46	Solar integration delay	"", 0 199	Min.	1	0
47	Tmin solar collector	"", -30 0	°C	1	- 10
48	Tmax solar collector	"", 80 199	°C	1	120

PARAMETERS RESTORATION

.

PAR	DESCRIPTION	RANGE	UNIT OF	INC/DEC	DEFAULT
			MEASUREMENT	UNIT	SETTING
49*	Reset default parameters	, 1	=	=	=
	(par 01 - par 02 = "-")				

 Should the boiler not be operating correctly, the original default values can be reset by setting PAR 49 = 1 and the PAR 1 and PAR 2 as specified at point 3.3.1.

ATTENTION: curves are calculated at an ambient temperature of 20°C. The user can alter the boiler controls to change the environment set for which curve has been calculated by ±5°C. Fig. 13

2 /	EVTEDNAL	CENCOD
3.4	EXTERNAL	SENSUR

If there is an external sensor, the heating settings SET can be taken from the climatic curves according to the external temperature and, in any case, limited to with the range values described in point 3.3 (parameters PAR 25 for zone 1 and PAR 26 for zone 2). The climatic curve to be set can be selected from a value of 3 and 40 (at step 1). Increasing the steepness of the curves of fig. 13 will increase the output temperature as the external temperature decreases.

3.5 CARD FUNCTIONING

The electronic card has the following functions:

- Antifreeze protection of the heating and D.H.W. circuits (ICE).
- Ignition and flame detection system.
- Control panel setting for the power and the gas for boiler functioning.
- Anti-jamming for the pump which is fed for a few seconds after 24 hours of inactivity.
- Antifreeze protection for boilers with D.H.W. storage tank.
- Chimney sweep function which can be activated from the control panel.
- Temperature which can be shifted with the external sensor connected.
 It can be set from the control panel and is active on the heating systems of both circuit 1 and circuit 2.
- Management of two independent heating circuit systems.
- Automatic regulation of the ignition power and maximum heating. Adjustments are managed automatically by the electronic card to guarantee maximum flexibility in use of the system.

3.6 TEMPERATURE DETECTION SENSOR

Table 3 shows the resistance values of the heating, D.H.W. and fumes sensors. If the heating sensor (SM) is faulty or open circuit, the boiler will not function on either heating or D.H.W. (ALL 05). If the exhaust fumes sensor (SF) is faulty or open circuit, the boiler will not function on either heating or D.H.W. (ALL 14). If the D.H.W. sensor (SS) is faulty or open circuit, the boiler will work without modulation to the DHW temperature.

TABLE 3 (SM - SS - SF sensors)

Temperature (°C)	Resistance (Ω)
20	12.090
30	8.313
40	5.828
50	4.161
60	3.021
70	2.229
80	1.669

3.7 ELECTRONIC IGNITION

Ignition and flame detection is controlled by electrodes on the burner which guarantees reaction in the case of accidental extinction or lack of gas within one second.

3.7.1 Functioning cycle

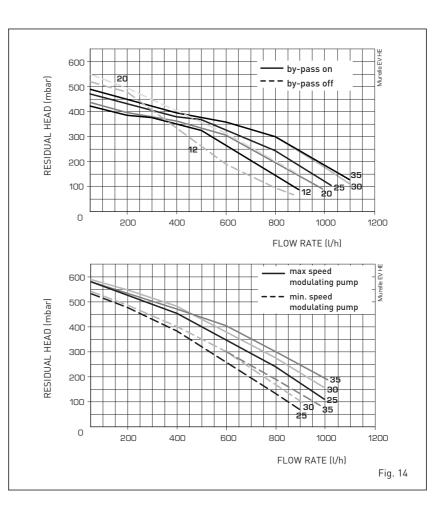
Burner ignition should occur within 10 seconds of the opening of the gas valve. If after three attempts the ignition is not detected the boiler will lockout (ALL 06):

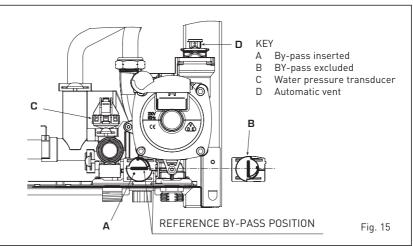
- Lack of gas

The ignition electrode will discharge for a maximum of 10 seconds. If after three attempts the ignition is not detected the boiler will lockout (ALL 06). This can happen the first time a boiler is switched on, or after long periods of inactivity. It can also be caused by a closed gas cock or a gas valve not operating.

- No ionisation

The boiler will spark for 10 seconds, if after 3 attempts the ionisation is not detected, the boiler will lockout (ALL 06). This could be due to a poor connection or break in the ionisation cable. Check also that the cable is not shorted, badly worn or distorted.

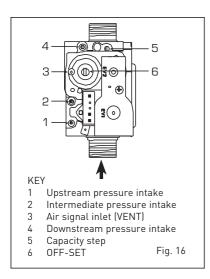

In the case of a sudden loss of voltage, the burner will immediately switch off. When voltage returns, the boiler will automatically start up again.


3.8 HEAD AVAILABLE TO SYSTEM

Residual head for the heating system is shown as a function of rate of flow in the graph in fig. 14.

The speed of the modulating pump is set as default (installation parameter PAR 13=1).

To obtain the maximum head available to the system, turn off the by-pass by turning the union to the vertical position (fig. 15).



4 USE AND MAINTENANCE

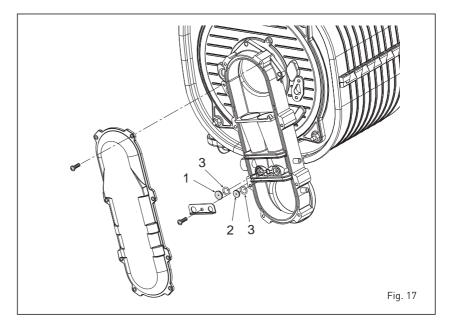
4.1 GAS VALVE (fig. 16)

The boiler is supplied as standard with a gas valve, model SIT 848 SIGMA (Fig. 16).

4.2 GAS CONVERSION (fig. 17)

This operation must be performed by authorised personnel using original iQE components. To convert from natural gas to LPG or vice versa, perform the following operations:

- Close the gas cock.
- Replace the two differential nozzles (1-2) and relative seal o-rings (3) with those supplied in the conversion kit. The difference in the shape of the head of the nozzles should be noted avoid reversal during assembly.
- Reset PAR as shown in 4.2.1.
- Apply the nameplate with the new gas flow layout.
- Calibrate the maximum and minimum pressures of the gas valve following the instructions provided in paragraph 4.2.2.


MODELS	Code LPG kit
20 T - 25 T - 25	5185143
30 T - 30	5185144
35 T - 35	5185145

4.2.1 New fuel configuration

For access to the installer's parameters. press simultaneously keys and D for 5 seconds (3 fig. 12).

Scroll through the parameters using the and D buttons. The SET of the parameter is changed using the and D. The display pane will show the values of the parameter PAR 1. If the boiler is a vers. 25 methane (G20) model, SET 3 will be displayed:

To change the fuel to propane (G31), it is necessary to set SET 9, by pressing the key 1.

The standard display will automatically return after 10 seconds.

The table below shows the SET settings to enter when the type of gas fuel is changed.

GAS	MODELS	PAR 1
UAS	MODELS	TANT
		1
METHANE	20 T	2
(G20)	25 T - 25	3
	30 T - 30	4
	35	5
		6
	20 T	7
PROPANE	25 T - 25	9
(G31)	30 T - 30	11
	35	12

4.2.2 Calibrating the gas valve pressures (see 4.8.1)

This can only be done using a flue gas analyser.

If the combustion reading is greater than the acceptable value AND the integrity of the complete flue system and combustion seals have been verified, and the inlet gas pressure has been verified then adjustments to the gas valve can be made as described below.

Make only small adjustments (1/8 turn max), and allow time for the combustion analysis to be made before making further adjustments.

Sequence of operations:

1) Press and hold the button $\textcircled{\mathbb{P}}$ down for

a few seconds.

- 2) Press the button for a few seconds $\textcircled{\pm}$.
- 3) Identify the CO₂ value at max power, adjust using the shutter (5 fig. 16):

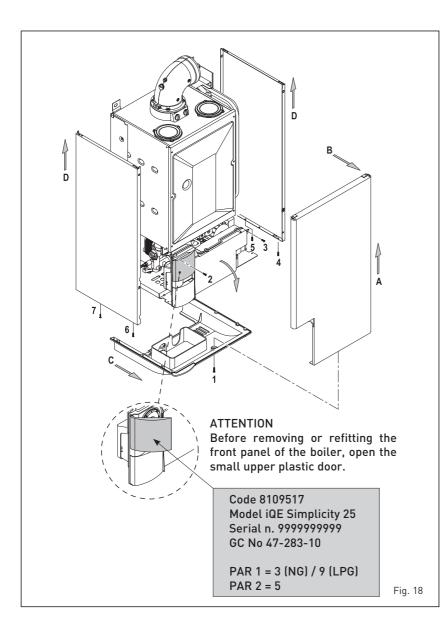
MAX power									
CO2 (Methane)	CO2 (Propane)								
9,0 ±0,3	10,0 ±0,3								

- 4) Press the button for a few seconds 🖃.
- 5) Identify the CO₂ value at min power, adjust using the OFF-SET regulation screw (6 fig. 16):

MIN power									
CO ₂ (Methane) CO ₂ (Propane)									
9,0 ±0,3	10,0 ±0,3								

- 6) Press the min and max values several times using the ➡. and ➡ buttons, reset as necessary.__
- 7) Press the button 🖾 once more to quit the function.

4.3 RATIO

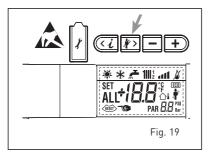

CO ppm							
100	400						
0,0011	0,0044						
0,0010	0,0040						

4.4 REMOVING THE COVERS (fig. 18)

It is possible to completely remove the covers for easier access as shown in fig 18. The control panel can be hinged forward after removing the front cover and the retaining screw 2.

4.5 MAINTENANCE

As a condition of the warranty and to ensure correct operation and efficiency it is important that the boiler is serviced



at regular intervals, at least once a year. This must be done only by a qualified technician. During the routine service the condensate drain can be checked. It is important should the boiler not be used for some time that the trap is checked and filled if required.

This can be done by carefully injecting water into the flue exhaust test point.

4.5.1 Chimney sweep function (fig. 19)

To check the boiler combustion press

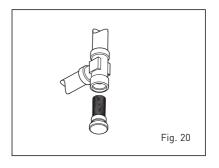
the Chimney sweep button 🗈 for a few seconds, the Chimney sweep icon will illuminate. The boiler will ignite and continue for 15 minutes in heating mode. The burner will turn off at 80 degrees and reignite at 70 degrees.

(WARNING! Ensure adequate circulation around heating system before activating the Chimney sweep function).

The test can also be carried out using the

boiler in D.H.W. mode. After activating Chimney sweep, turn on a D.H.W. tap. Under these circumstances the boiler will operate at maximum power with the D.H.W. circuit kept between 60 degrees and 50 degrees, the tap must remain open. If the ➡ and ➡ keys are presses during the 15 minutes the boiler will be brought respectively to max and min output. The chimney sweep function will

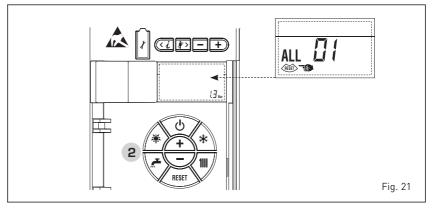
The chimney sweep function will automatically cancel after 15 minutes or if the chimney sweep button is pressed again.


4.5.2 Cleaning the "Aqua Guard Filter System" (fig. 20)

To clean the filter, first close the flow and return isolation valves.

Drain the boiler using the drain vent. Place a container underneath the filter, and unscrew the filter.

Clean the filter and replace.

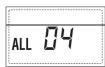

Check the o-ring seal after refilling the boiler.

4.6 FUNCTIONING ERRORS

Where there is a functioning error an alarm appears on the display. **The blue luminous bar may turn red.** Descriptions of the error are given below:

- FLUE TEMPERATURE ALARM 01 (fig. 21) Check link on terminals 54-56 at PCB.
- LOW SYSTEM PRESSURE ALARM 02
 If the system pressure detected by the transducer is lower than 0.5 bar the boiler will stop and display error "ALL

02". Increase the system pressure to between 1.0 and 1.5 bar using the external filling loop. The boiler will automatically resume operating.



 HIGH SYSTEM PRESSURE ALARM 03
 If the system pressure detected by the transducer is more than 2.8 bar, the boiler will stop and display "ALL 03". Drain water from the system until the pressure is between 1.0 and 1.5 bar. Ensure that the filling loop is disconnected. If the problem persists, seek technical advice.

- D.H.W. SENSOR ALARM 04

If the D.H.W. sensor (SS) is open or short circuit, the boiler will continue to operate but without control of the D.H.W. temperature. The display will show "ALL 04".

- HEATING SENSOR ALARM 05

If the heating sensor (SM) is open or short cicuit, the boiler will stop operating and display "ALL 05".

- LOCKOUT ALARM 06 (fig. 22)

If a flame is not detected after a complete ignition cycle or for any other reason the flame is not detected, the boiler will stop and display "ALL 06". Press the reset button on the control panel (2) to restart the boiler. Should the problem persist seek technical help.

SAFETY THERMOSTAT ALARM 07 (fig. 23)

If either the 100 degree stat or the heat exchanger safety stat open, the burner will turn off. If the stat closes within 1 minute, the boiler will resume operation. If the stat remains open for more than 1 minute the display will show "ALL 07". Press the reset key is on the control panel (2) to restart the boiler. If the problem persists seek technical advice.

- FLAME DETECTION ERROR 08 If the flame control detects aflame

when one should not be detected, the boiler will stop and display "ALL 08".

- SYSTEM WATER CIRCULATION ERROR 09 1. Water circulation has not been detected in the primary(boiler) circuit. If this error is detected the boiler will make two further attempts. If circulation is not detected the boiler will stop and display ALL 09. NOTE: Circulation is detected by a small rise in system pressure at the boiler transducer when the pump is energised. In large systems this may not be detected and can be disabled by alteration of PAR4.

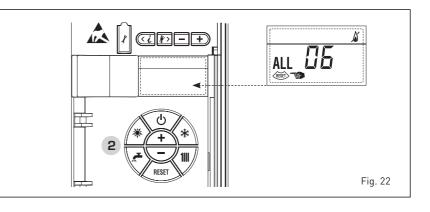
2. The flow temperature sensor has detected a temperature rise in excess of 5 degrees per second.

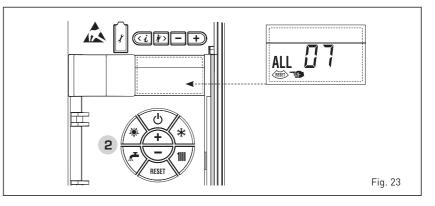
Check to see if there is water circulation inside the boiler and check if the pump is operating properly. To exit the anomaly press the b button of the controls [2]. If the anomaly persists, request assistance from qualified technical personnel.

 AUXILIARY SENSOR ANOMALY ERROR 10 BOILER WITH ACCUMULATION: anomaly of the D.H.W. sensor. When the D.H.W. sensor is open or short circuited, the display will show anomaly "ALL 10". The boiler will function but will not modulate power for the D.H.W.

BOILER ONLY FOR HEATING: antifreeze sensor anomaly for boilers which foresee the use of antifreeze sensors. When the sensor is open or short circuited, the boiler loses part of its anti-freeze functions and the display will show anomaly "ALL 10".

BOILER COMBINED WITH SUN-PANEL SYSTEM: anomaly of the D.H.W. input sensor. When the sensor is open or short circuited, the boiler loses the sun-panel function and the display will show anomaly "ALL 10".




ACTIVATION OF THE EXHAUST FUMES SENSOR ERROR 13

The activation of this probe causes the boiler to stop and error message "ALL 13" to display. Press the key and of the controls (2) to start up the boiler again.

 EXHAUST FUMES SENSOR ERROR 14
 If the exhaust fumes sensor is open or short circuit, the boiler will stop and

display "ALL 14".

- FAN ERROR 15

If the fan speed is not within the rated speed range,the display will show "ALL 15". If the problem persists for more than two minutes the boiler will stop thirty minutes, after which it will attempt to resume operating.

NOTE: SHOULD ANY OTHER ERRORS OR ALARMS BE INDICATED THAT ARE NOT LISTED HERE, ENSURE THAT THE BOILER IS CONFIGURED CORRECTLY, SEE 3.3.

4.7 COMMISSIONING AND ROUTINE SERVICE

Commissioning and servicing can only be done by a qualified engineer.

4.7.1 Commissioning

The gas valve is factory set and should require no adjustment.

PLEASE NOTE: The combustion for this appliance has been checked, adjusted and preset at the factory for operation on the gas type specified on the appliance data plate. However it is advisable to check for correct combustion as described in 4.8.1, having first checked:

- That the boiler has been installed in accordance with these instructions.
- The integrity of the flue system and the flue seals
- The integrity of the boiler combustion circuit and the relevant seals.

Proceed to put the boiler into operation as follows, after installation a gas purge and tightness/drop test have been made. Ensure that the auto air vent (17 fig. 3) is opened, turn the electrical supply on. With the boiler on standby fill the system and pressurise to 1.5 bar. Ensure that the pump has been manually rotated. Open the gas cock, press the "* mode key" (fig. 12). Ensure that any timers or room thermostats are in the on position. The boiler will attempt to light.

4.7.2 PAR 31 Maximum heating power

PAR31 (parameter 31) is set as default on the combi boiler to 79% and on the

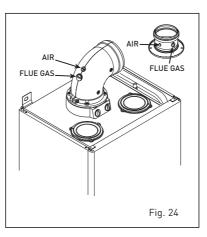
System T boiler to 100% of the maximum boiler heating output.

This value should be adjusted to correctly represent the actual heating power output required for the installation.

4.8 CHECK THE OPERATIONAL (WORKING) GAS INLET PRESSURE

Set up the boiler to operate at maximum rate condition (chimney sweep) as described in 4.5.1. With the boiler operating in the maximum rate condition, check that the operational (working) gas pressure at the inlet test point (see fig 16 item 1), complies with the requirements of 1.3. Ensure that this inlet pressure can be maintained with all other appliances in the property working

4.8.1 Combustion Check (fig. 24)


Competence to carry out the check of combustion performance.

PLEASENOTE:BS6798:2009Specification for installation and maintenance of gasfired boilers of rated input not exceeding 70kw net advises that:

- The person carrying out a combustion measurement should have been assessed as competent in the use of a flue gas analyser and the interpretation of the results;
- The flue gas analyser should be one meeting the requirements of BS7927 or BS-EN50379-3 and be calibrated in accordance with the analyser manufacturers requirements, and
- Competence can be demonstrated by satisfactory completion of the CPA1 ACS assessment which covers the use of electronic portable combustion gas analysers in accordance with BS7967, parts 1 to 4.

Conduct a flue gas analysis as detailed in Appendix 2.

See 4.5.1 "Chimney sweep" for details how to set the boiler to minimum and maximum outputs.

4.8.2 Burner inspection

Remove the burner as described in section 6.4. Inspect the burner and if necessary clean using a soft brush, taking care not to damage the front insulation. Check the Ignition/ionisation electrode, check the ignition spark gap (4 mm+/- 0.5 mm). Check the ionisation electrode, check the distance from the burner (18.7 mm+/- 1 mm). Before reassembly inspect all seals and replace as required.

4.8.3 Combustion Chamber

Remove any loose debris from the combustion chamber using a soft brush and a vacuum cleaner. Take care not to damage the rear insulation panel.

4.8.4 Condensate Trap

The condensate trap would not normally require removal during service, but can be checked whilst the burner assembly is removed. Carefully pour water into the heat exchanger and check that it flows freely to the drain. Should it require removal, firstly remove the two wire clips securing the condensate drain rubber pipe to the heat exchanger and the condensate trap. Remove the pipe. Remove the 1/2" nut securing the condensate trap to the combustion compartment.

Disconnect the drain pipe from the trap. Clean the trap and refit in reverse order.

4.8.5 Aqua Guard Filter

It is recommended that the Aqua Guard filter is checked at each service. See section 4.5.2.

GAS BOILER SYSTEM COMMISSIONING CHECKLIST

This Commissioning Checklist is to be completed in full by the competent person who commissioned the boiler as a means of demonstrating compliance with the appropriate Building Regulations and then handed to the customer to keep for future reference.

Failure to install and commission according to the manufacturer's instructions and complete this Benchmark Commissioning Checklist will invalidate the warranty. This does not affect the customer's statutory rights.

Customer name: Telephone number:																		
Address:																		
Boiler make and model:																		
Boiler serial number:																		
Commissioned by (PRINT NAME):								Gas Safe register number:										
Company name: Telephone number:																		
Company address:																		
Commissioning date:																		
To be completed by the customer on receipt of a Building Regulations Compliance Certificate*																		
Building Regulations Notification Number (if applicable):																		
CONTROLS (tick the appropriate boxes	3)																	
Room thermostat and programmer/timer Programmable room thermostat																		
Time and temperature control to heating	9			Loa	d/weath	ner com	npensa	ation					0	ptimu	m stai	t con	trol	
Time and temperature control to hot wat	ter	Cylin	der ther											-	binatio		-	
Heating zone valves						-		itted							Not	requii	red	
Hot water zone valves							F	itted								requii		
Thermostatic radiator valves								itted								requi		
Automatic bypass to system								itted								requi		
Boiler interlock																Provid		
																	.00	
ALL SYSTEMS			07500					• •										
The system has been flushed and clean	ied in accordanc	e with E	357593	and t	poller m	anutac	turers	Instru	uctions							۱	/es	
What system cleaner was used?																		
What inhibitor was used?												C	Quanti	ty				tres
Has a primary water system filter been i	installed?												Yes				No	
CENTRAL HEATING MODE measure a	and record:																	
Gas rate						m³/hr				OR							ft	³/hr
Burner operating pressure (if applicable)					mbar		C	DR Gas i	nlet pre	essure						m	bar
Central heating flow temperature																		°C
Central heating return temperature																		°C
COMBINATION BOILERS ONLY																		
Is the installation in a hard water area (a	above 200ppm)?												Yes				No	
If yes, and if required by the manufactur	rer, has a water s	scale ree	ducer b	een fi	tted?								Yes				No	
What type of scale reducer has been fitt																		
DOMESTIC HOT WATER MODE Meas																		
Gas rate						m³/hr	•			OR							ft	³/hr
Burner operating pressure (at maximum	n rate)					mbar	OR	Gas ii	nlet press	sure at	maximu	m rate					m	bar
Cold water inlet temperature	,						_											°C
Hot water has been checked at all outle	ts										Ye	s	Tem	perati	ure			°C
Water flow rate													1				1/1	min
CONDENSING BOILERS ONLY																		
The condensate drain has been installer	d in accordance	with the	manuf	o oture	ar'a inat	nuction	o ond/		EE AGIDO	6709							/es	
		with the	e manui	acture		IUCION	s anu/	0 03	0040/00	0790							les	
ALL INSTALLATIONS	1.																	
Record the following:	At max. rate:				0		F	opm	AND	CO/				Rati	0			
	At min. rate: (w		,		0		1	ppm	AND	CO/	CO2			Rati	0			
The heating and hot water system comp				-	•												/es	
	The boiler and associated products have been installed and commissioned in accordance with the manufacturer's instructions Yes																	
The operation of the boiler and system controls have been demonstrated to and understood by the customer Yes																		
The manufacturer's literature, including Benchmark Checklist and Service Record, has been explained and left with the customer Yes																		
Commissioning Engineer's Signature																		
Customer's Signature																		
(To confirm satisfactory demonstration a	and receipt of ma	nufactu	urer's lite	eratur	e)													
													_					

*All installations in England and Wales must be notified to Local Authority Building Control (LABC) either directly or through a Competent Persons Scheme. A Building Regulations Compliance Certificate will then be issued to the customer.

www.centralheating.co.uk

 $\ensuremath{\mathbb{C}}$ Heating and Hotwater Industry Council (HHIC)

SERVICE RECORD

It is recommended that your heating system is serviced regularly and that the appropriate Service Interval Record is completed. Service Provider

Before completing the appropriate Service Record below, please ensure you have carried out the service as described in the manufacturer's instructions. Always use the manufacturer's specified spare part when replacing controls.

SER	VICE 01			Date:	SER	VICE 02			Date:		
Engineer name:					Engineer	Engineer name:					
Company name:					Company	y name:					
Telephone No:					Telephone No:						
Gas safe	register No:				Gas safe	register No:					
	At max. rate:	CO ppm	AND	CO2 %		At max. rate:	CO ppm	AND	CO2 %		
Record:	At min. rate: (Where Possible)	CO ppm	AND	CO2 %	Record:	At min. rate: (Where Possible)	CO ppm	AND	CO2 %		
Commen	ts:				Commen	its:					
					1						
Signature	•				Signature	e					
CED	VICE 03			Date:	SED	VICE 04			Date:		
L				Date.					Date.		
Engineer					Engineer						
Company					Company						
Telephon					Telephon						
Gas sate	register No:	22		00.01	Gas sate	register No:	22	4110	00.11		
Record:	At max. rate:	CO ppm	AND	CO2 %	Record:	At max. rate:	CO ppm	AND	CO2 %		
	At min. rate: (Where Possible)	CO ppm	AND	CO2 %		At min. rate: (Where Possible)	CO ppm	AND	CO2 %		
Commen	IS:				Commen	ITS:					
Ciara attant					Olara a trans						
Signature	;				Signature	5					
SER	VICE 05			Date:	SER	VICE 06			Date:		
Engineer	name:				Engineer	name:					
Company	name:				Company	y name:					
Telephon	e No:				Telephon	ie No:					
Gas safe	register No:				Gas safe	register No:					
Record:	At max. rate:	CO ppm	AND	CO2 %	Record:	At max. rate:	CO ppm	AND	CO2 %		
	At min. rate: (Where Possible)	CO ppm	AND	CO2 %		At min. rate: (Where Possible)	CO ppm	AND	CO2 %		
Commen	ts:				Commen	its:					
Signature	•				Signature	9					
SER	VICE 07			Date:	SER	VICE 08			Date:		
Engineer	name:				Engineer	name:					
Company	name:				Company	y name:					
Telephon	e No:				Telephone No:						
Gas safe	register No:				Gas safe	register No:					
Deserved	At max. rate:	CO ppm	AND	CO2 %	Deserved	At max. rate:	CO ppm	AND	CO2 %		
Record:	At min. rate: (Where Possible)	CO ppm	AND	CO2 %	Record:	At min. rate: (Where Possible)	CO ppm	AND	CO2 %		
Commen	ts:				Commen	its:					
] [
Signature)				Signature	e					
SER	VICE 09			Date:	SER	VICE 10			Date:		
Engineer					Engineer						
Company name:						y name:					
Telephone No:				Telephon							
Gas safe register No:						register No:					
	At max. rate:	CO ppm	AND	CO2 %		At max. rate:	CO ppm	AND	CO2 %		
Record:	At min. rate: (Where Possible)	CO ppm	AND	CO2 %	Record:	At min. rate: (Where Possible)	CO ppm	AND	CO2 %		
Commen					Commen				1		
					1						
Signature	•				Signature	9					

*All installations in England and Wales must be notified to Local Authority Building Control (LABC) either directly or through a Competent Persons Scheme. A Building Regulations Compliance Certificate will then be issued to the customer.

© Heating and Hotwater Industry Council (HHIC)

5 FAULT FINDING

If an electrical fault occurs on the appliance the preliminary electrical system checks must be carried out first. When any service or replacement of electrical components which has required the breaking and re-making of electrical connections has taken place, the following tests must be repeated:

- earth continuity;
- short circuit;
- polarity;
- resistance to earth.

5.1 EARTH CONTINUITY CHECK

Appliances must be electrically disconnected, meter set on Ω (ohm) x 1 scale and adjust zero if necessary. Tests leads from any appliance earth point (e.g. inside control box) see wiring diagrams (section 7) to earth pin on plug.

Resistance should be less than 1 Ω (ohm). If the resistance is greater than 1 Ω (ohm) check all earth wires for continuity and all contacts are clean and tight. If the resistance to earth is still greater than 1 Ω (ohm) then this should be investigated futher.

5.2 SHORT CIRCUIT CHECK

Switches turned FULL ON - meter set on Ω (ohms) x 1 scale. Test leads from L to N on appliance terminal block, if meter reads 0 then there is a short circuit. Meter set on Ω (ohm) x 100 scale. Repeat it with leads from L to E. If meter reads less than infinity (∞) there is a fault.

NOTE: Should it be found that the fuse has failed but no fault is indicated, a detailed continuity check (i.e. by disconnecting and checking each component) is required to trace the faulty component. It is possible that a fault could occur as a result of local burning/arcing but no fault could be found under test. However, a detailed visual inspection should reveal evidence of burning around the fault.

5.3 POLARITY CHECK

Appliance reconnected to mains supply and meter set on 300 V ac scale. Test at appliance terminal block.

 Test leads from L to N meter reads approx.: 240 V ac.

- Test leads from L to E "*" meter reads approx. 240 V ac.
- Test leads from N to E "*" meter reads from 0 to 15 V ac.

5.4 RESISTANCE TO EARTH CHECK

Appliance must be disconnected from main supply and meter on Ω (ohm) x 100 scale.

All switches including thermostat on test leads from L to E - if meter reads other than infinity (∞) there is a fault which should be isolated.

A detailed continuity check is required to trace the faulty component.

IMPORTANT:

These series of checks are the first electrical checks to be carried out during a fault finding procedure.

On completion of the service/fault finding task which has required the breaking and remaking of electrical connections then the checks 5.1 Earth continuity, 5.3 Polarity and 5.4 Resistance to earth must be repeated.

6 **REPLACEMENT OF PARTS**

EXPANSION VESSEL 6.1

- Turn off power supply _
- Remove boiler cover, see 4.4. _
- Isolate flow and return valves _
- Drain boiler using fitted drain vent _ _
- Disconnect expansion pipe
- Loosen top fixing screw and remove _ lower fixing screw
- Remove vessel
- Check new vessel for correct pressure 1- 1.25 bar
- Refit in reverse order.

6.2 **IGNITION ELECTRODE**

- Turn off power supply _
- Remove boiler cover see 4.4 _
- Remove sealed chamber cover _
- Disconnect electrode from ignition _ transformer
- Pull lead through grommet
- Remove electrode fixing screw
- Carefully remove electrode from _ burner
- Replace in reverse order.

IONISATION ELECTRODE 6.3

- Turn off power supply _
- Remove boiler cover see 4.4 _
- Remove sealed chamber cover _
- Disconnect electrode
- Remove electrode fixing screw _
- Carefully remove electrode from _ burner
- Replace in reverse order.

MAIN BURNER 6.4

- Turn off power supply _
- _ Isolate gas supply
- Remove boiler cover _
- Remove sealed chamber cover
- Disconnect gas connection at injector _
- Disconnect air sensing tube _
- _ Disconnect two plugs to fan
- Remove ignition electrode 6.3 _
- Disconnect ionisation electrode _
- Remove 4 x 10mm nuts securing burner to heat exchanger
- Carefully lift out burner assembly
- Refit in reverse order
- _ Test for gas tightness.

6.5 FAN ASSEMBLY

- Remove burner assembly as described _ in 6.4
- Remove 2 x 8mm bolts and loosen 2 x 8mm securing fan to burner assembly
- Remove restrictor plate and fit to new fan
- Refit in reverse order
- Recommission boiler
- Test for gas tightness.

MAIN HEAT EXCHANGER 6.6

- Turn off power supply
- Isolate gas supply
- Isolate flow and return valves _
- _ Drain boiler using drain vent
- _ Remove burner assembly as described in 6.4
- Remove flue connection
- Disconnect flue sensor
- Disconnect limit stat
- Remove condensate drain connections
- Disconnect flow and _ return connections
- Remove two fixing brackets
- Lift out heat exchanger _
- Refit in reverse order - Recommission boiler
- Test for gas tightness.

6.7 FLUE SENSOR

- Turn off power supply -
- Remove cover _
- Remove sealed chamber cover
- Disconnect flue sensor _
- Unscrew sensor _
- _ Replace in reverse order.

100° SAFETY STAT 6.8

- Turn off power supply

4

З

2

1

TABLE 1

Gas

Methane

LPG

(O)

50

30

۲

Minimum output

SHUTTERfully open

AdjustOFF-SET

mmH₀0

4.1

4.5

4.3

6,3

10.9

6.6

8.6

 (\mathbb{D})

Model

20

25 30

35

20

25

30

35

5

6

KEY

1

2

3

4

5

6

Maximumoutput

OFF SET adjusted

AdjustSHUTTER

mmH₂0

54.0

81.6

69,4

88,7

60.2

91.8

73.4

102.0

- Remove cover
- Remove sealed chamber cover
- Disconnect 100° safety stat

- Remove fixing screws
- Refit in reverse order.

HEATING THERMISTOR 6.9 (SM SENSOR)

- Turn off power supply
- Remove cover _
- Isolate flow and return valves
- Drain boiler using drain vent _
- Disconnect thermistor
- Unscrew thermistor (catch any water lost)
- Refit in reverse.

D.H.W. THERMISTOR 6.10 (SS SENSOR)

- Turn off power supply _
- Remove cover see 4.4
- Isolate cold water supply valve
- Open a D.H.W. tap
- Disconnect thermistor
- Unscrew thermistor (catch any water lost)
- Refit in reverse.

6.11 GAS VALVE (fig. 25)

- Turn off power supply
- _ Isolate gas supply
- Remove boiler cover see 4.4
- Disconnect wiring from gas valve _ Disconnect sensing tube

Upstream pressure intake

Air signal inlet (VENT)

CD2 %

+/-0.3

9.0

9.0

9.0

9.0

10.0

10.0

10.0

Ratio

ess the

0.004

0.004

0.004

0,004

0.004

0.004

0.004

0.004

Fig. 25

29

Capacity step

OFF-SET

Intermediate pressure intake

Downstream pressure intake

- Remove gas valve
- Refit in reverse order ensuring seals are replaced as required
- This operation to be performed only when the gas valve is replaced or gas conversion.

IMPORTANT: The working inlet gas pressure must not be less than 19mb. Do NOT connect the analyser until required in these instructions:

- 1. If the heating system is hot, temporarily replace the sensor with a loose one.
- Open the downstream test point (4 fig.25) and connect a digital manometer set on the mm H20 scale. Ensure the meter is zeroed.
- 3. Fully open the SHUTTER (5 fig.25) -turn anti clockwise
- Press and hold the button for 10 seconds to enter "chimney sweep" will appear flashing on the display and the boiler runs at minimum power.
- 5. With the SHUTTER (5 fig.25) fully open, adjust the OFF-SET (6 fig.25) to obtain the first pressure value shown in Table 1 - OFF-SET column, ensure that the value is correct for the gas being used. If these figure are not obtainable (low), confirm that the working inlet gas pressure is correct.
- 6. Press the button, the boiler will increase to maximum power.
- Close the SHUTTER (5 fig.25) to obtain the second pressure reading indicated in Table 1 – SHUTTER column.
- Once these adjustments have been obtained, a flue gas analysis mustbe done. See section 4.2.2 of the installation manual for full details.
- 9. Press the button to return the boiler to minimum output.
- 10. Now connect the flue gas analyser.
- Check the analyzer CO2/Ratio and compare to values reported in Table
 Make any final adjustments by small adjustments to the OFF-SET screw (6 fig. 25), allow time for the analyser to respond to the adjustments.
- 12. Press the button, the boiler will move to maximum output. Verify that the CO2/Ratio. Make any final adjustments by small adjustments to the SHUTTER (5 fig.25) allow time for the analyser to respond.
- 13. Recheck the low reading by pressing the button.
- 14. Press the Standby key to exit.15. Remove the manometer and analyser, close the test points, and check for tightness.
- Check for gas soundness.

30

6.12 PRINTED CIRCUIT BOARD (PCB)

- Isolate from power supply
- Remove screw securing control panel
- Lower panel to horizontal position
- Remove PCB covers
- Disconnect all wiring
- Remove PCB fixing screws
- Ensure any PCB links are matched to old board
- Reset PAR 1 and PAR 2 as per the table 3.3.1
- Refit in reverse order
- Recommission boiler.

6.13 PUMP MOTOR

- Isolate boiler
- Remove cover
- Isolate flow and return valves
- Drain boiler using drain vent
- Remove electrical lead from pump
 Remove 4 x fixing screws from pump
- housing catching any excess water
- Pull pump forward
- Refit in reverse order

6.14 DOMESTIC HOT WATER HEAT EXCHANGER

- Isolate boiler
- Remove cover
- Isolate flow and return
- Turn on D.H.W tap
- Close cold water supply isolation valve
- Drain boiler using drain vent
- Remove 2 x screws from RH and LH technil
- Remove plate heat exchanger catching any excess water
- Ensure that the four O rings are removed from the technil assembly
- Fit the new 0 rings supplied with new heat exchanger to the heat exchanger
- Refit in reverse order

6.15 MOTOR HEAD

- Isolate mains
- Remove cover
- Remove pin from valve head body
- Disconnect lead
- Lift motor upwards
- Refit in reverse order

6.15.1 DIVERTER VALVE CARTRIDGE

- Isolate boiler
- Remove cover
- Isolate flow and return valves
- Drain boiler using drain vent
- Remove air inlet duct
- Disconnect return pipe from pump housing

- Unplug pump removing top cover
- Remove 2x screws holding pump and pull forwards catching any excess water
- Remove motor head as described in 6.15Remove pin, lift cartridge housing
- upwards catching any excess water
- Refit in reverse order ensure cartridge is locked in position

6.16 INTERNAL AUTO AIR VENT (AAV)

- Turn off power supply
- Isolate flow and return valves
- Remove boiler cover
- Drain boiler using drain vent
- Remove AAV
- Replace in reverse order.

6.17 SAFETY VALVE

- Turn off power supply
- Isolate flow and return valves
- Remove boiler cover
- Drain boiler using drain vent
- Disconnect pipe from safety valve
- Remove safety valve securing clip
- Remove safety valve, catch any water lost
- Refit in reverse.

6.18 DHW THERMISTOR (WHEN FITTED)

- Isolate boiler
- Remove cover
- Isolate cold inlet
- Open hot tap
- Remove clip
- Pull upwards and remove, catching excess water
- Refit in reverse order

6.19 WATER PRESSURE TRANSDUCER

- Isolate boiler
- Remove cover
- Isolate cold inlet

excess water

- Refit in reverse order

DHW FLOW SENSOR

- Remove cable from flow sensor and

- Lift flow sensor blue clip pull forward

- Open hot tap
- Remove clipPull upwards and remove, catching

- Isolate boiler

Remove cover

pull forward

- Refit in reverse order

6.20

INDUSTRY GUIDANCE FOR INSTALLERS ON CONDENSATE

DRAINAGE PIPE INSTALLATION

This guidance is endorsed by HHIC members.

1. BACKGROUND

During recent winters the UK has experienced prolonged spells of extremely cold weather down to minus 20°C and below in many areas. This resulted in a significant increase in the number of calls to boiler manufacturers and heating engineers from householders with condensing (high efficiency) boilers where the condensate drainage pipe had frozen and become blocked with ice, causing the boiler to shut down. In the vast majority of cases such problems occur where the condensate drainage pipe is located externally to the building for some part of its length.

British Standards, Building Regulations etc. currently allow condensate drainage pipes to be run either internally or externally, or a combination of these. These documents give guidance on how to install the pipes in order to reduce the possibility of freezing. However this guidance may not be sufficient to prevent freezing in extreme conditions - with widespread and prolonged very low temperatures.

In view of the possibility that UK weather patterns will show more "extremes" in future due to the effects of global climate change, the following guidance updates previous recommendations on condensate drainage pipe installation. All other technical requirements for condensate drain installation given in British Standard BS 6798:2009, or in boiler manufacturers' installation instructions should still be followed.

2. REVISED GUIDANCE ON CONDENSATE DRAINAGE PIPE INSTALLATION

Where a new or replacement boiler is being installed, access to an internal "gravity discharge" termination should be one of the main factors considered when determining potential boiler locations, so that the condensate drainage pipe can be terminated as recommended below. On an existing installation, the guidance below should also be followed if work is carried out to "upgrade" the condensate drain age system to reduce the risk of freezing in extreme conditions.

Internal condensate drainage pipework must be a minimum of 19mm ID (typically 22mm OD) plastic pipe and this should "fall" at least 45 mm per metre <u>away</u> from the boiler, taking the shortest practicable route to the termination point.

In order to minimise the risk of freezing during prolonged very cold spells, one of the following methods of terminating condensate drainage pipe should be adopted -

2.1 INTERNAL TERMINATION:

Wherever possible, the condensate drainage pipe should be terminated at a suitable internal foul water discharge point such as (a) an internal soil and vent stack or (b) an internal kitchen or bathroom waste pipe, washing machine waste pipe etc. A suitable permanent connection to the foul waste pipe should be used. Figures 1, 2(a), 2(b) show appropriate connection methods.

The possibility of waste pipes freezing downstream of the connection point should be considered when determining a suitable connection point - e.g. a slightly longer pipe run to an internal soil stack may be preferable to a shorter run connecting into a kitchen waste pipe discharging directly through the wall to an external drain.

Where "gravity discharge" to an internal termination is not physically possible (e.g. the discharge point is above the appliance location, or access is obstructed by a doorway), or where very long internal pipe runs would be required to reach a suitable discharge point, the following measures may be adopted -

2.2 USE OF A CONDENSATE PUMP (TO AN INTERNAL TERMINATION):

Condensate can be removed using a proprietary condensate pump, of a specification recommended by the boiler or pump manufacturer.

The pump outlet should discharge to a suitable internal foul water discharge point, such as (a) an internal soil and vent stack or (b) an internal kitchen or bathroom waste pipe, washing machine waste pipe etc. Figure 3 shows a typical connection method.

A suitable permanent connection to the foul waste pipe should be used and the manufacturer's detailed installation instructions for the pump should be followed.

2.3 EXTERNAL TERMINATION:

The use of an externally-run condensate drainage pipe, terminating at a suitable foul water discharge point or purpose-designed soakaway, may be also be considered; however if this termination method is chosen then the following measures should be adopted -

The pipe should be run internally as far as possible before going externally and the pipe diameter should be increased to a minimum of 30mm ID (typically 32mm OD) before it passes through the wall.

The external run should be kept as short as possible, taking the most direct and "most vertical" route possible to the discharge point, with no horizontal sections in which condensate might collect.

The external pipe should be insulated using suitable waterproof and weatherproof insulation ("Class O" pipe insulation is suitable for this purpose) .

The use of fittings, elbows etc should be kept to a minimum and any internal "burrs" on cut pipework should be removed so that the internal pipe section is as smooth as possible.

The customer/householder should be advised that even with the above measures this type of installation could freeze, and that if this were to occur then boiler shutdown could result, requiring remedial action - possibly involving a chargeable engineer call-out.

Where there are likely to be extremes of temperature or wind-chill, the use of a proprietary trace-heating system for external condensate drainage pipework, incorporating an external frost thermostat, should therefore be considered. If such a system is used then the installation instructions of the trace heating manufacturer and any specific recommendations regarding pipe diameter, insulation, etc. should be followed. All other relevant guidance on condensate drainage pipe installation should also be followed.

Other cold weather protection methods approved or endorsed by boiler manufacturers and/or service organisations may be adopted if these are considered suitable by the parties involved.

If an external soil/vent stack is used as the external termination then the connection method shown in Figure 4 should be used, together with the measures on insulation etc. as described above and shown in the diagram.

When a rain water downpipe is used as the termination (**NB** only permissible if this downpipe passes to a combined foul and rainwater drainage system) an air break must be installed between the condensate drainage pipe and the downpipe to avoid reverse flow of rainwater into the boiler should the downpipe itself become flooded or frozen. Figure 5 shows a suitable connection method.

Where the condensate drainage pipe is terminated over an open foul drain or gully, the pipe should terminate below the grating level, but above water level, in order to minimise "wind chill" at the open end. Pipe drainage will be improved if the end is cut at 45° as opposed to a straight cut. The use of a drain cover (such as those used to prevent blockage by leaves) may offer further protection from wind chill. Figure 6 shows a suitable connection method.

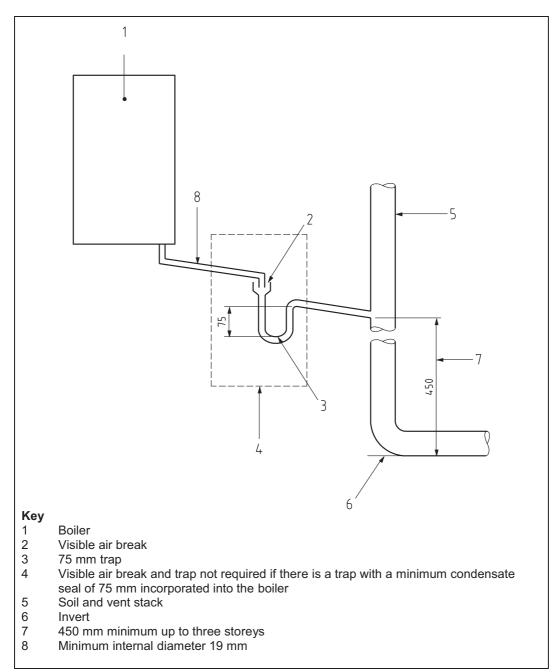
Where the condensate drain pipe terminates in a purpose-designed soakaway (see BS 6798:2009 or boiler installation manual for soakaway design requirements) any aboveground section of condensate drainage pipe should be run and insulated as described above. Figure 7 shows a suitable connection method.

3. UNHEATED INTERNAL AREAS:

Internal condensate drainage pipes run in unheated areas such as lofts, basements and garages should be treated as external pipe.

NOTES

The Benchmark Commissioning Checklist (located at the back of the boiler installation manual) should be completed as required to record details of the condensate drainage pipe installation.


Where an external condensate drainage pipe is installed, the customer should be made aware of the risks and consequences of its freezing and offered the option to fit trace heating (or other measures approved by the boiler manufacturer or service organisation).

Separate guidance has been published for householders on remedial actions which can be taken if a condensate drainage pipe freezes. This may result in requests for alteration to condensate drainage pipework, in which case the guidance above should be followed.

In some instances (e.g. where an elderly person's heating needs to be reinstated as an emergency measure) condensate drainage pipes may have been cut in order to bypass any blockage and allow re-ignition of the boiler, with condensate being collected in a suitable container as a temporary solution.

While not unsafe, this is not recommended practice and if such action has been taken then the condensate drainage pipe must be reinstated as soon as possible, using the above guidance to reduce risk of freezing in future.

Figure 1 – Connection of condensate drainage pipe to internal soil and vent stack

IND GUIDE INST 10-11

HHIC REF T11/0027BRev8

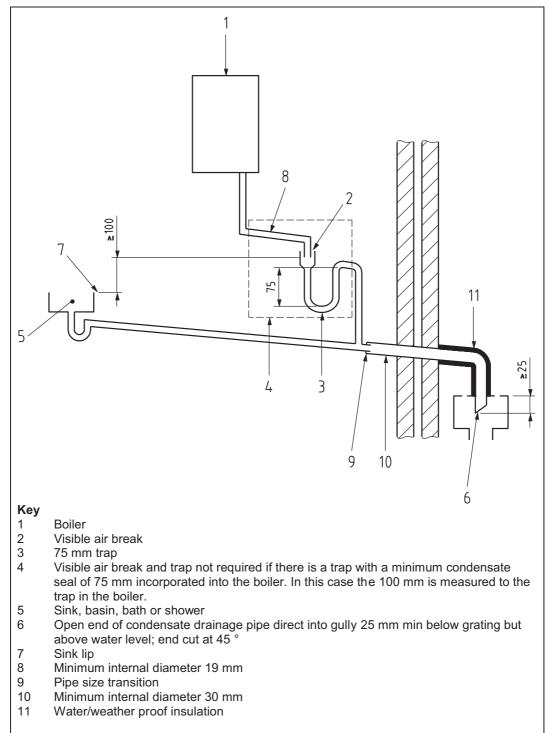
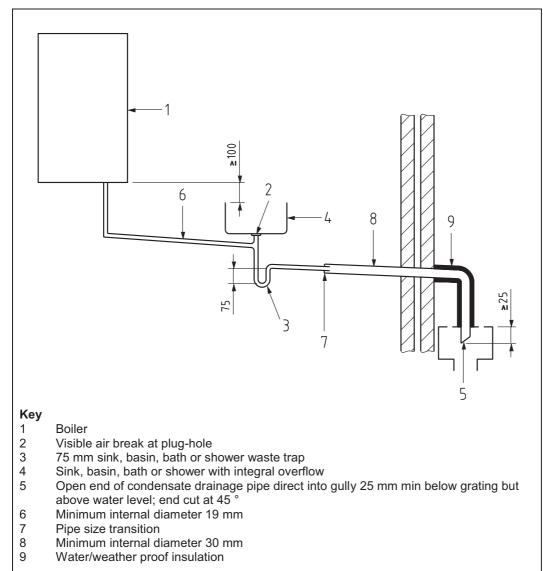



Figure 2(a) – Connection of a condensate drainage pipe downstream of a sink, basin, bath or shower waste trap

Figure 2(b) – Connection of a condensate drainage pipe upstream of a sink, basin, bath or shower waste trap

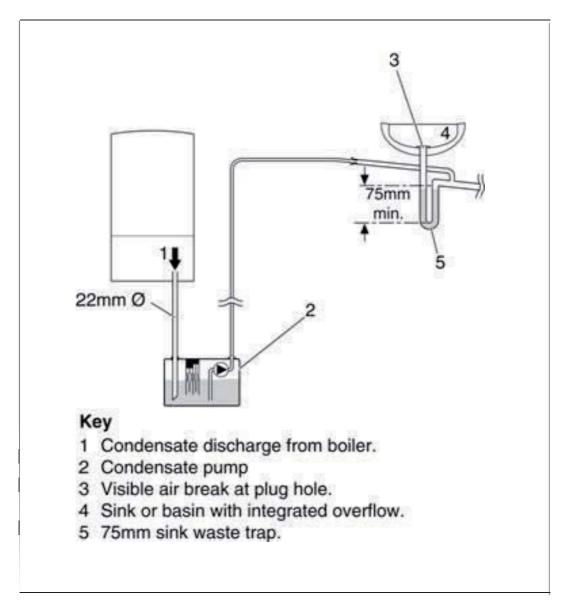
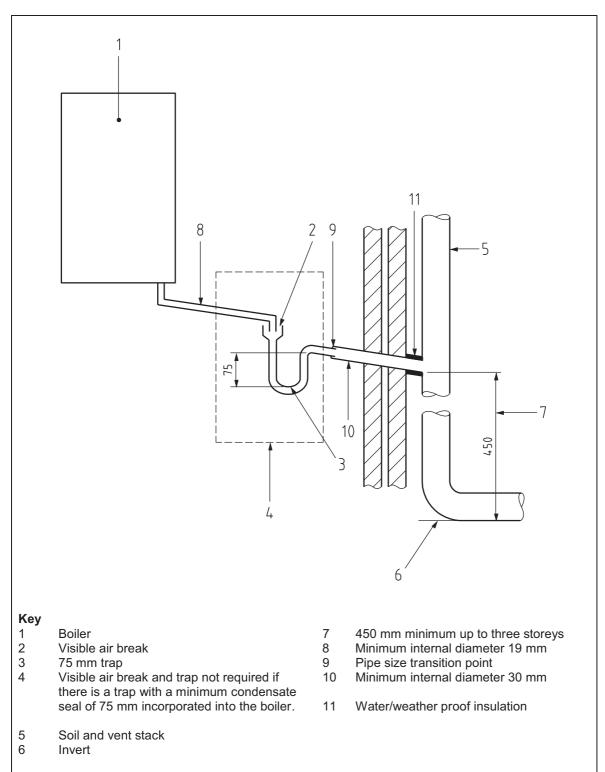
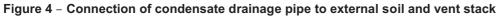
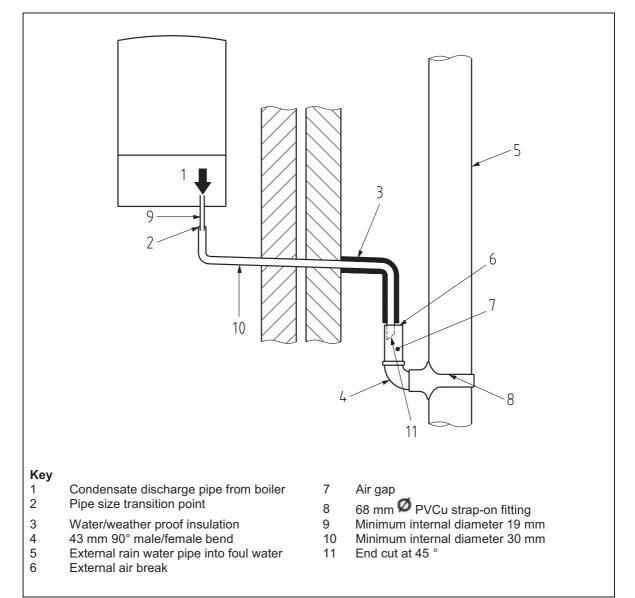




Figure 3 – Connection of a condensate pump - typical method (NB manufacturer's detailed instructions should be followed).

IND GUIDE INST 10-11



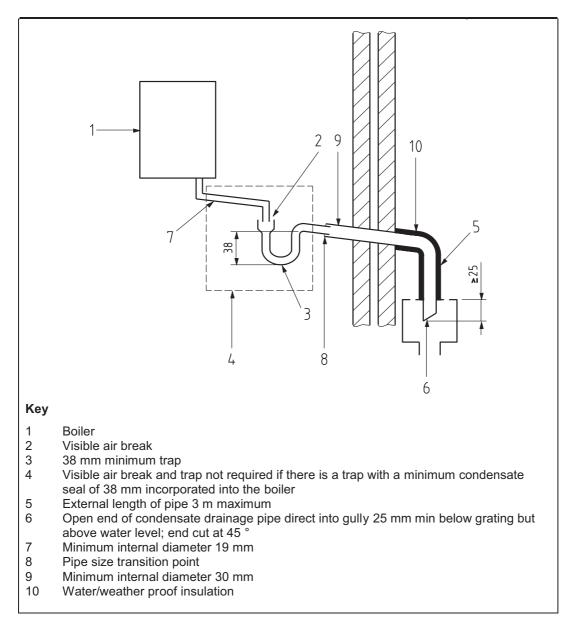

IND GUIDE INST 10-11

Figure 5 – External termination to rainwater downpipe (NB only combined foul/rainwater drain)

Figure 6 - External drain, gully or rainwater hopper

HHIC REF T11/0027BRev8

8 ≥500 11 9 10 2 3 **v** 25 ≥ 300 5 6 7 Key Condensate discharge pipe from boiler 1 2 Ground (this section of the condensate drainage pipe may be run either above or below ground level); End cut at 45 ° 3 Diameter 100 mm minimum plastic tube Bottom of tube sealed 4 5 Limestone chippings 6 Two rows of three 12 mm holes at 25 mm centres, 50 mm from bottom of tube and facing away from house Hole depth 400 mm minimum by 300 mm diameter 7 8 Minimum internal diameter 19 mm Pipe size transition point 9 10 Minimum internal diameter 30 mm

Figure 7 – Example of a purpose-made soakaway

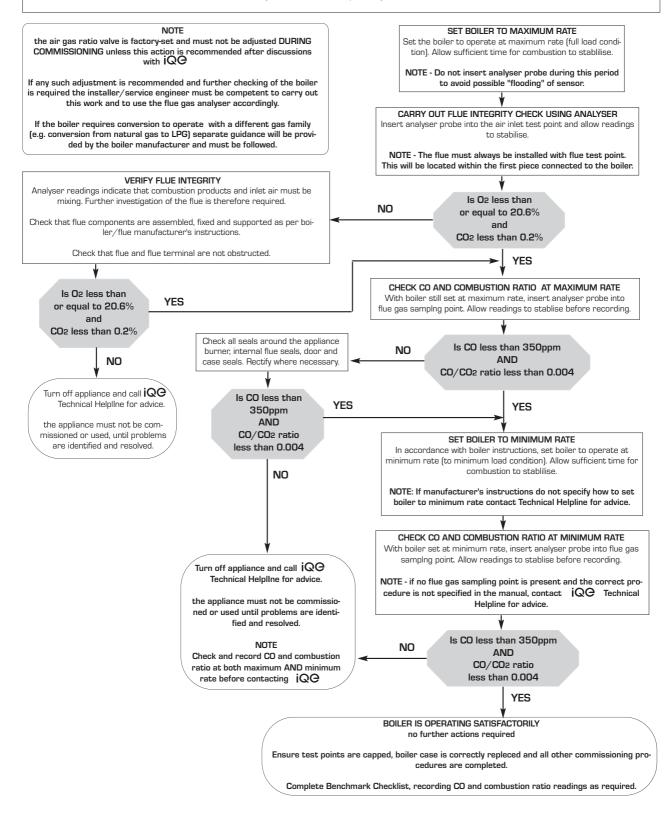
11 Water/weather proof insulation

IND GUIDE INST 10-11

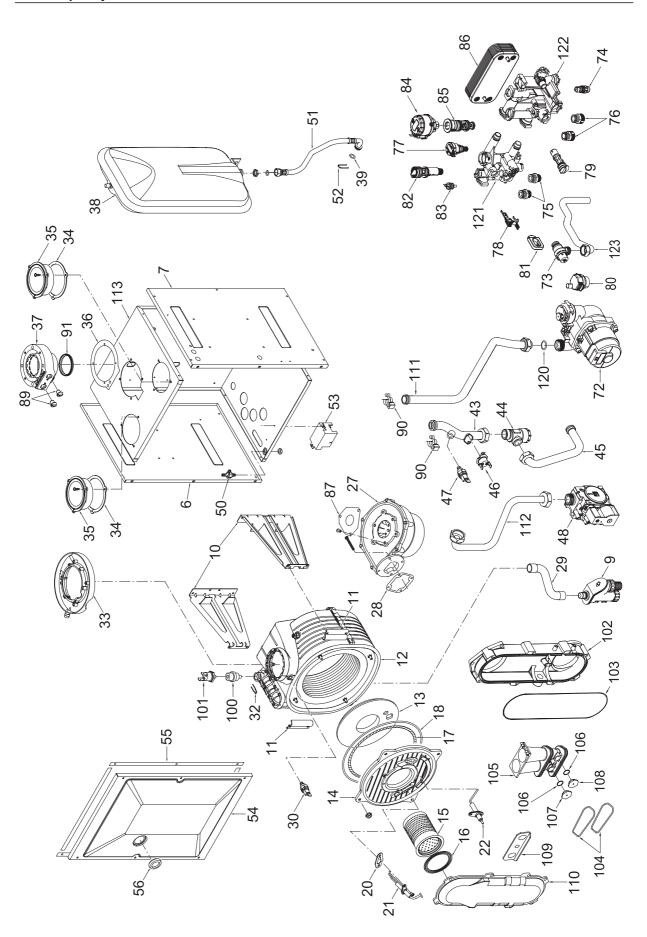
8 APPENDIX 2

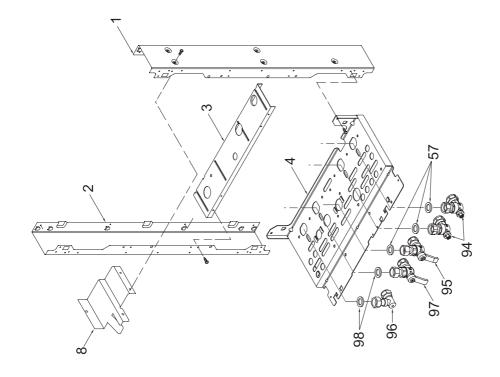
FLOWCHART FOR CO AND COMBUSTION RATIO CHECK ON COMMISSIONING A CONDENSING BOILER

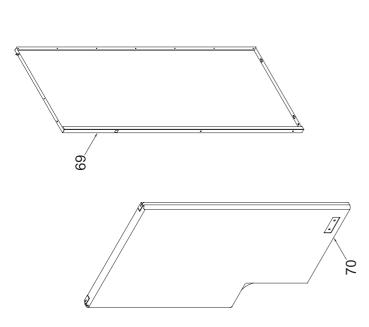
PRIOR TO CO AND COMBUSTION RATIO CHECK

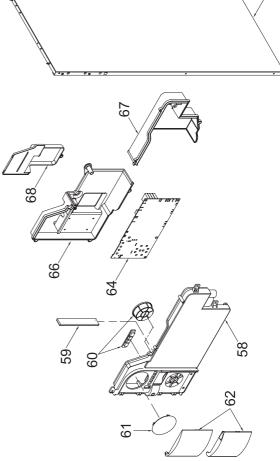

The installation instructions should have been followed, gas type verified and gas supply pressure/rate checked as required prior to commissioning.

As part of the installation process, ESPECIALLY WHERE A FLUE HAS BEEN FITTED BY PERSONS OTHER THAN THE BOILER INSTALLER, visually check the integrity of the whole flue system to confirm that all components are correctly asembled, fixed and supported. Check that manufacturer's maximum flue lengths have not been exceeded and all guidance has been followed (e.g. Gas Safe Technical Bulletin TB008).


The flue gas analyser should be of the correct type, as specified by BS 7967

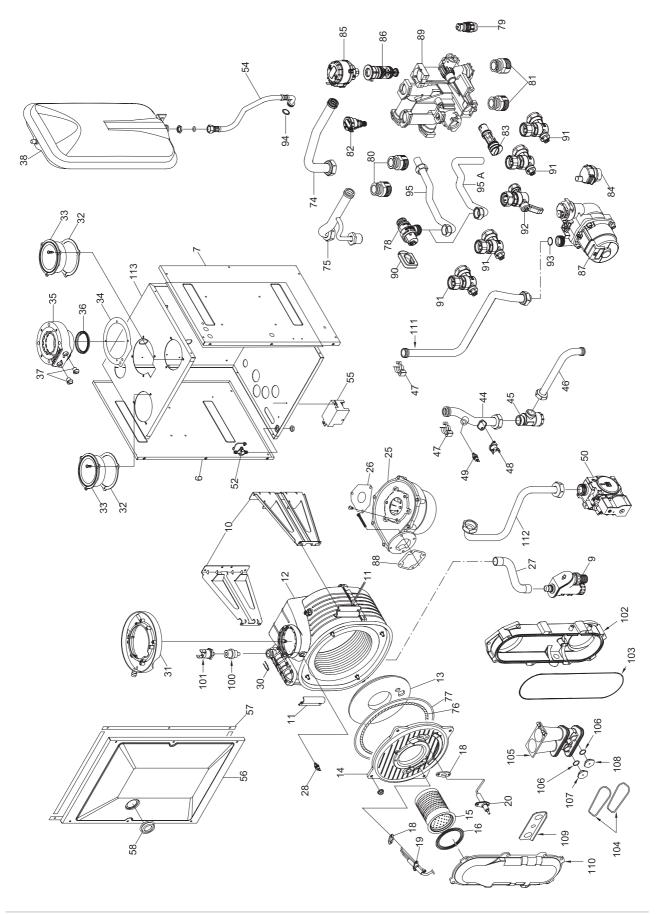

Prior to its use, the flue gas analyser should have been maintained and calibrated as specified by the manufacturer. The installer must have the relevant competence for use of the analyser.

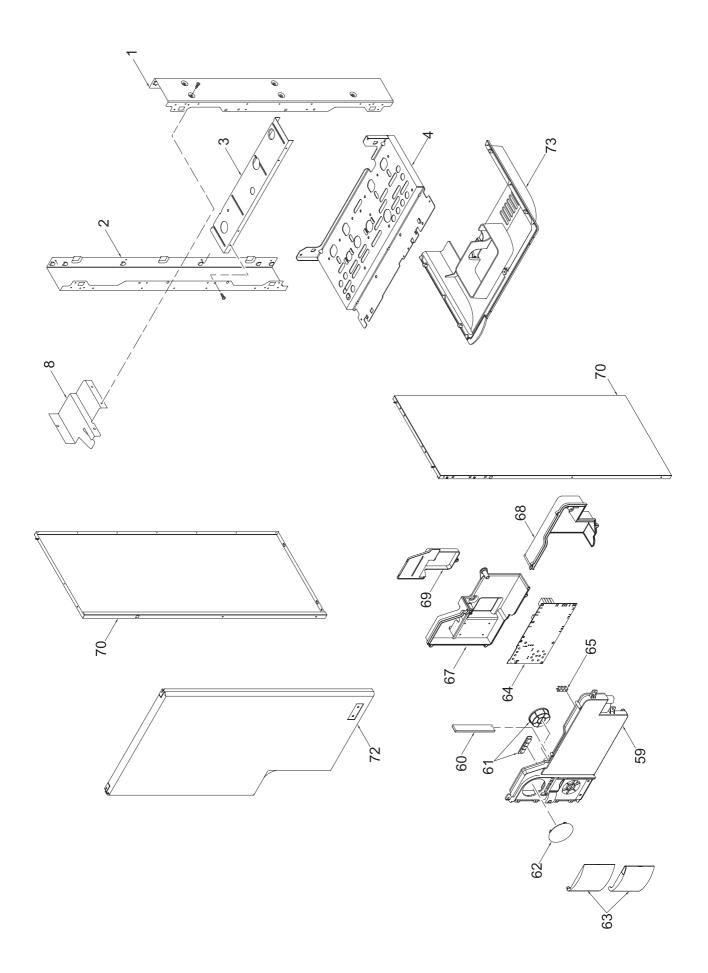

Check and zero the analyser IN FRESH AIR as per analyser manufacturer's instructions.



IQE Simplicity 25 - 30 - 35

Position	Code	Description	Model
1	6138533	Right hand side frame part	
2	6138632	Left hand side frame part	
3	6255431	Expansion vessel lower support	
4	6138894	Frame assembly lower side	
6	6266152	Sealed chamber left hand side panel	
7	6266153	Sealed chamber right hand side panel	
8	6189589	Expansion vessel fixing bracket	
9	6277205	Water trap	
10	6010830	Main exchanger supporting bracket	25
10 A	6010833	Main exchanger supporting bracket	30
10 B	6010831	Main exchanger supporting bracket	35
11	6010829	Main exchanger fixing bracket	
12	6278913	Main exchanger body	25
12 A	6278912	Main exchanger body	30
12 B	6278910	Main exchanger body	35
13	6269008	Main exchanger door insulation	
14	6278853	Main exchanger door	
15	6278359	Premix burner	
16	6174817	Gasket for burner flange	
17	6248860	Glass fibre sealing cord	
18	6248861	Combustion chamber O-ring	
20	6174809	Gasket for ignition electrode	
21	6221632	Ignition electrode	
22	6221623	Ionisation electrode	
27	6261408	Fan	25.20
27 A	6261405	Fan	25-30 35
28	6174816	Gasket for fan flange	55
29	6034155	Condensate drainage pipe	
30	6277130	Probe NTC D.4X40	
32	6226624	Spring air vent knob	
33	6288010	Size pick up condensate	
34 35	6028707	Air intake gasket Air intake	
	6288000		
36	6028710	Air/smoke manifold gasket	
37	6287912	Air/smoke manifold	25
38	5183712	Rectang. expansion vessel 8 l.	25
38 A	5183722	Rectang. expansion vessel 10 l.	30-35
39	6226464	O-ring 115 diam. 11,91x2,62	
43	6277723	Pipe connect. exchanger-C.H filter	25-30
43 A	6277721	Pipe connect. exchanger-C.H filter	35
44	6295501	C.H. filter 3/4"M x 3/4"M	
45	6277728	Pipe connect. C.H. filter-C.H. flow	
46	6146701	100°C safety stat	
47	6231351	Plunged sensor	
48	6243823	Gas valve type	
50	6280590	Three way fitting + cap kit	
51	6017312	Flexible pipe	
52	6226627	Expansion vassel fixing spring	
53	6098315	Ignition transformer	
54	6288314	Sealed chamber front panel	


Position	Code	Description	Model
55	5192200	Gasket for sealed chamber	
56	6001210	Peephole	
57	2030228	Gasket diam. 17x24x2	
58	6304700	Control panel	
59	6305160	Guidelight with led	
60	6305120	Kit Rubber button	
61	6247327	Cap for time programmer	
62	6304890	Flap door assembly	
64	6301416	Main PCB	
66	6305000	Cover	
67	6305010	connection cover	
68	6305020	Time programmer cover	
69	6304430	casing left/right side panel	
70	6304231	Casing front panel	
72	6272312	Circulating pump	
73	6040211	Pressure relief valve 3 bar	
74	6319603	Discharger cock	
75	6120532	D.H.W. Nipple	
76	6120533	C.H Nipple	
77	6273608	Water pressure transducer	
78	6319601	Sensor hall complete	
79	6319641	By-pass 2 (new)	
80	6013182	Automatic air vent	
81	6275910	Pressure relief valve operation lever	
82	6319630	Flowmeter	25
82 A	6319631	Flowmeter	30
82 B	6319632	Flowmeter	35
83	6231364	Plunged sensor	
84	6319620	Divertor valve motor	
85	6319625	Diverting valve body	
86	6319692	Kit 18 plate heat exchanger + or	
87	6028646	Air diaphragm	
89	6147409	Air/smoke manifold plug M14x1.5	
90	6226619	Spring for heat exchanger connection	
91	6248817	Lip seal for 60 pipe	
94	6177505	Ball cock 3/4" x 22	
95	6177530	Gas cock 3/4" F x 15	
96	6142330	Quarter bend 1/2" x 15	
97	6177506	Ball cock 1/2" x 15	
98	2030227	Gasket diam. 12x18x2	
100	6112330	Bush thermostatic	
101	6146728	Limit stat auto reset 80°C	
102	6278813	Air-gas hose lower side	
103	6226465	O-ring diam. 183,83 x 2,62	
104	6226470	ORing 52,07 x 2,62	
105	6274372	Mixer	25
105 A	6274370	Mixer	30
105 B	6274371	Mixer	35
106	6226403	O-ring 2031	
107	6322356	Hexagonal nozzle diam. 3,30	25 - MET


Position	Code	Description	Model
107 A	6322358	Hexagonal nozzle diam. 2,60	25 - LPG
107 B	6322350	Hexagonal nozzle diam. 3,80	30 - MET
107 C	6322352	Hexagonal nozzle diam. 2,90	30 - LPG
107 D	6322353	Hexagonal nozzle diam. 4,00	35 - MET
107 E	6322354	Hexagonal nozzle diam. 3,00	35 - LPG
108	6322306	Round nozzle diam. 2,40	25 - MET
108 A	6322308	Round nozzle diam. 1,90	25 - LPG
108 B	6322300	Round nozzle diam. 2,80	30 MET / 35 LPG
108 C	6322302	Round nozzle diam. 2,20	30 - LPG
108 D	6322303	Round nozzle diam. 3,50	35 - MET
109	6267119	Nozzle locking bracket	
110	6278812	Air-gas hose upper side	
111	6227436	C.H. return pipe	
112	6277422	Pipe connecting gas valve-mixer	25
112 A	6277421	Pipe connecting gas valve-mixer	30
112 A	6277423	Pipe connecting gas valve-mixer	35
113	6266074	Sealed chamber rear panel	
120	6226457	O-ring 12bis diam. 16x1,90	
120	6319680	D.H.W. Technyl manifold group	
122	6319681	C.H. Technyl manifold group	
123	6157649	Pressure relief valve drain pipe	
125	0137049	Pressure relier valve drain pipe	
	5197121	Complete control panel	
	6316202	Connector 4 poli CN6	
	6316203	Connector 4 poli CN4	
	6316204	Connector 8 poli CN7	
	6316213	3 pole cable connector CN14	
	6316274	4 pole cable connector CN9	
	6316280	4 pole cable connector CN12	
	6316282	5+4+2 pole cable connector	
	5189040	Valve pack and jig kit	
	6127214	Main cable L=1500	
	6186587	Ionisation electrode cable	
	6319699	Split pin kit for hydraulic group	
	6319698	O-ring kit for hydraulic group	
	6281534	Gaskets kit	
	6319695	Murelle-Formato-ring kit	
	5198695	Technyl hydraulic group	
	6211793	Hydr.group Bitron caps kit exp	
	6319145	9 pole female cable connector	25-30
	6323815	14 pole cable connector	25-35
	6316295	4 pole cable connector CN9	30
	6323816	14 pole female cable connector	30
	5185143	Conversion kit to LPG	
	5185145	Conversion kit to LPG	
		Conversion kit to LPG	
	5185145		

Products reference:

8109517 - 8109518 - 8109519

Check the correspondence with the boiler data plate.

Position	Code	Description	Model
1	6138533	Right hand side frame part	
2	6138632	Left hand side frame part	
3	6255431	Expansion vessel lower support	
4	6138894	Frame assembly lower side	
6	6266152	Sealed chamber left hand side panel	
7	6266153	Sealed chamber right hand side panel	
8	6189589	Expansion vessel fixing bracket	
9	6277205	Water trap	
10	6010832	Main exchanger supporting bracket	25T
10 A	6010830	Main exchanger supporting bracket	20T
10 B	6010833	Main exchanger supporting bracket	30T
10 C	6010831	Main exchanger supporting bracket	35T
11	6010829	Main exchanger fixing bracket	
12	6278913	Main exchanger body	20T-25T
12 A	6278912	Main exchanger body	30T
12 R	6278910	Main exchanger body	35T
13	6269008	Main exchanger door insulation	331
14	6278853	Main exchanger door	
15	6278359	Premix burner	
16	6174823	Gasket for burner flange	
18	6174809	Gasket for ignition electrode	
19	6221632	Ignition electrode	
20	6221632	Ionisation electrode	
25	6261408		DT-25T-30T
25 A	6261405	Fan	35T
25 A 26	6028643		25T-30T
		Air diaphragm diam. 27	251-501
27 28	6034155 6277130	Condensate drainage pipe Probe NTC D.4X40	
30	6226624	Spring air vent knob	
31	6288010	Size pick up condensate	
32	6028707	Air intake gasket	
33	6288000	Air intake	
34	6028710	Air/smoke manifold gasket	
35	6287912	Air/smoke manifold	
36	6248817	Lip seal for diam. 60 pipe	
37	6147409	Air/smoke manifold plug M14x1.5	
38	5183712	Rectang. expansion vessel 8 l.	20T-25T
38 A	5183722	Rectang. expansion vessel 10 l.	30T-35T
44	6277723	Pipe connect. exchanger-C.H filter 20T	
44 A	6277721	Pipe connect. exchanger-C.H filter	35T
45	6295501	C.H. filter 3/4"M x 3/4"M	
46	6277729	Pipe connect. C.H. filter-C.H. flow	
47	6226619	Spring for heat exchanger connection	
48	6146701	100°C safety stat	
49	6231351	Plunged sensor	
50	6243823	Gas valve type	
52	6280590	Three way fitting + cap kit	
54	6017312	Flexible pipe	
55	6098315	Ignition transformer	

Position	Code	Description	Mode
57	5192200	Gasket for sealed chamber	
58	6001210	Peephole	
59	6304700	Control panel	
60	6305160	Guidelight with led	
61	6305120	Kit Rubber button	
62	6247327	Cap for time programmer	
63	6304890	Flap door assembly	
64	6301416	Main PCB	
65	2211610	Earth faston	
67	6305000	Cover	
68	6305010	Connection cover	
69	6305020	Time programmer cover	
70	6304430	Casing left/right side panel	
72	6304231	Casing front panel	
73	6269531	Fittings protection	
74	6277937	Tanck return pipe	
75	6277938	Tanck flow pipe	
76	6248860	Glass fibre sealing cord	
77	6248861	Combustion chamber O-ring	
78	6040211	Pressure relief valve 3 bar	
79	6319603	Discharger cock	
80	6120535	Nipple	
81	6120533	C.H Nipple	
81	6273608	Water pressure transducer	
83	6319641	By-pass 2 (new)	
84	6013182	Automatic air vent	
85	6319620	Divertor valve motor	
86	6319625	Diverting valve body	
87	6272312	Circulating pump	
88	6174816	Gasket for fan flange	
		_	
89	6319696	C.H. Technyl manifold group	
90	6275910	Pressure relief valve operation lever	
91	6177505	Ball cock 3/4" x 22	
92	6177530	Gas cock 3/4" F x 15	
93	6226457	O-ring 12bis diam. 16x1,90	
94	6226464	O-ring 115 diam. 11,91x2,62	
95	6157648	Pressure relief valve drain pipe	20T-25T-301
95 A	6157649	Pressure relief valve drain pipe	351
100	6112330	Bush thermostatic	
101	6146728	Limit stat auto reset 80°C	
102	6278813	Air-gas hose lower side	
103	6226465	O-ring diam. 183,83x2,62	
104	6226470	ORing 52,07 x 2,62	
105	6274372	Mixer	20T-25T
105 A	6274370	Mixer	30T
105 B	6274371	Mixer	35T
107	6322356	Hexagonal nozzle diam. 3,30	20T - 25 T MET
107 A	6322358	Hexagonal nozzle diam. 2,60	20T - 25 T LPG
107 B	6322350	Hexagonal nozzle diam. 3,80	30T MET
107 C	6322352	Hexagonal nozzle diam. 2,90	30T LPG

Position	Code	Description	Model
107 D	6322353	Hexagonal nozzle diam. 4,00	35T MET
107 E	6322354	Hexagonal nozzle diam. 3,00	35T LPG
108	6322306	Round nozzle diam. 2,40	20T-25T MET
108 A	6322308	Round nozzle diam. 1,90	20T-25T LPG
108 B	6322300	Round nozzle diam. 2,80	30T MET - 35T LPG
108 C	6322302	Round nozzle diam. 2,20	30T LPG
108 D	6322303	Round nozzle diam. 3,50	35T MET
109	6267119	Nozzle locking bracket	
110	6278812	Air-gas hose upper side	
111	6227436	C.H. return pipe	
112	6277422	Pipe connecting gas valve-mixer	20T-25T
112 A	6277421	Pipe connecting gas valve-mixer	30T
112 B	6277423	Pipe connecting gas valve-mixer	35T
113	6266074	Sealed chamber rear panel	
	6231331	D.H.W. tank sensor	
	6316200	Connector 2 poli	
	6316202	Connector 4 poli CN6	
	6316203	Connector 4 poli CN4	
	6316204	Connector 8 poli CN7	
	6316210	9 pole cable connector CN3	
	6316213	3 pole cable connector CN14	
	6316280	4 pole cable connector CN12	
	6316283	5+4+2 pole cable connector	20T
	6316285	14 pole cable connector CN2	
	6316295	4 pole cable connector CN9	
	6127214	Main cable L=1500	
	6186587	Ionisation electrode cable	
	6316259	5 pole cable connector	35T
	6319698	O-ring kit for hydraulic group	
	6281534	Gaskets kit	
	6319699	Split pin kit for hydraulic group	
	6316282	5+4+2 pole cable connector	25T-30T-35T
	5198890	Technyl hydraulic group	
	6319695	Murelle-Formato-ring kit	
	6319145	9 pole female cable connector	
	6319155	2 pole cable connector	20T-25T
	6323816	14 pole female cable connector	
	5197123	Complete control panel	20T
	5197122	Complete control panel	25T-30T-35T
	5185143	Conversion kit to LPG	
	5185144	Conversion kit to LPG	
	5185145	Conversion kit to LPG	

Products reference: 8109526 - 8109527 - 8109528 - 8109529 Check the correspondence with the boiler data plate.

NOTES	

Cod. 6318118 - 10/2013 - Documentation Dpt.

iqe.co.uk Trade House BA22 8RT

Phone: 0800 0152252